| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcnpi.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | txcnpi.2 | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | txcnpi.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( ( 𝐽  ×t  𝐾 )  CnP  𝐿 ) ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 4 |  | txcnpi.4 | ⊢ ( 𝜑  →  𝑈  ∈  𝐿 ) | 
						
							| 5 |  | txcnpi.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 6 |  | txcnpi.6 | ⊢ ( 𝜑  →  𝐵  ∈  𝑌 ) | 
						
							| 7 |  | txcnpi.7 | ⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝑈 ) | 
						
							| 8 |  | df-ov | ⊢ ( 𝐴 𝐹 𝐵 )  =  ( 𝐹 ‘ 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 9 | 8 7 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 〈 𝐴 ,  𝐵 〉 )  ∈  𝑈 ) | 
						
							| 10 |  | cnpimaex | ⊢ ( ( 𝐹  ∈  ( ( ( 𝐽  ×t  𝐾 )  CnP  𝐿 ) ‘ 〈 𝐴 ,  𝐵 〉 )  ∧  𝑈  ∈  𝐿  ∧  ( 𝐹 ‘ 〈 𝐴 ,  𝐵 〉 )  ∈  𝑈 )  →  ∃ 𝑤  ∈  ( 𝐽  ×t  𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  ( 𝐹  “  𝑤 )  ⊆  𝑈 ) ) | 
						
							| 11 | 3 4 9 10 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ( 𝐽  ×t  𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  ( 𝐹  “  𝑤 )  ⊆  𝑈 ) ) | 
						
							| 12 |  | eqid | ⊢ ∪  ( 𝐽  ×t  𝐾 )  =  ∪  ( 𝐽  ×t  𝐾 ) | 
						
							| 13 |  | eqid | ⊢ ∪  𝐿  =  ∪  𝐿 | 
						
							| 14 | 12 13 | cnpf | ⊢ ( 𝐹  ∈  ( ( ( 𝐽  ×t  𝐾 )  CnP  𝐿 ) ‘ 〈 𝐴 ,  𝐵 〉 )  →  𝐹 : ∪  ( 𝐽  ×t  𝐾 ) ⟶ ∪  𝐿 ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝜑  →  𝐹 : ∪  ( 𝐽  ×t  𝐾 ) ⟶ ∪  𝐿 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  𝐹 : ∪  ( 𝐽  ×t  𝐾 ) ⟶ ∪  𝐿 ) | 
						
							| 17 | 16 | ffund | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  Fun  𝐹 ) | 
						
							| 18 |  | elssuni | ⊢ ( 𝑤  ∈  ( 𝐽  ×t  𝐾 )  →  𝑤  ⊆  ∪  ( 𝐽  ×t  𝐾 ) ) | 
						
							| 19 | 15 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  ∪  ( 𝐽  ×t  𝐾 ) ) | 
						
							| 20 | 19 | sseq2d | ⊢ ( 𝜑  →  ( 𝑤  ⊆  dom  𝐹  ↔  𝑤  ⊆  ∪  ( 𝐽  ×t  𝐾 ) ) ) | 
						
							| 21 | 20 | biimpar | ⊢ ( ( 𝜑  ∧  𝑤  ⊆  ∪  ( 𝐽  ×t  𝐾 ) )  →  𝑤  ⊆  dom  𝐹 ) | 
						
							| 22 | 18 21 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  𝑤  ⊆  dom  𝐹 ) | 
						
							| 23 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  𝑤  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑤 )  ⊆  𝑈  ↔  𝑤  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 24 | 17 22 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  ( ( 𝐹  “  𝑤 )  ⊆  𝑈  ↔  𝑤  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  ( 𝐹  “  𝑤 )  ⊆  𝑈 )  ↔  ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  𝑤  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 26 |  | eltx | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝑤  ∈  ( 𝐽  ×t  𝐾 )  ↔  ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) ) | 
						
							| 27 | 1 2 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽  ×t  𝐾 )  ↔  ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑧  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ↔  〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 30 | 29 | anbi1d | ⊢ ( 𝑧  =  〈 𝐴 ,  𝐵 〉  →  ( ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  ↔  ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) ) | 
						
							| 31 | 30 | 2rexbidv | ⊢ ( 𝑧  =  〈 𝐴 ,  𝐵 〉  →  ( ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  ↔  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) ) | 
						
							| 32 | 31 | rspccv | ⊢ ( ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) ) | 
						
							| 33 |  | sstr2 | ⊢ ( ( 𝑢  ×  𝑣 )  ⊆  𝑤  →  ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 34 | 33 | com12 | ⊢ ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ( 𝑢  ×  𝑣 )  ⊆  𝑤  →  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 35 | 34 | anim2d | ⊢ ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ( ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 36 |  | opelxp | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ↔  ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣 ) ) | 
						
							| 37 | 36 | anbi1i | ⊢ ( ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  ↔  ( ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 ) ) | 
						
							| 38 |  | df-3an | ⊢ ( ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) )  ↔  ( ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 39 | 35 37 38 | 3imtr4g | ⊢ ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 40 | 39 | reximdv | ⊢ ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ∃ 𝑣  ∈  𝐾 ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 41 | 40 | reximdv | ⊢ ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 43 | 32 42 | syl6 | ⊢ ( ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  →  ( 𝑤  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) ) | 
						
							| 44 | 43 | impd | ⊢ ( ∀ 𝑧  ∈  𝑤 ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝑧  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑤 )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  𝑤  ⊆  ( ◡ 𝐹  “  𝑈 ) )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 45 | 28 44 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  𝑤  ⊆  ( ◡ 𝐹  “  𝑈 ) )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 46 | 25 45 | sylbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝐽  ×t  𝐾 ) )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  ( 𝐹  “  𝑤 )  ⊆  𝑈 )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 47 | 46 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ( 𝐽  ×t  𝐾 ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑤  ∧  ( 𝐹  “  𝑤 )  ⊆  𝑈 )  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 48 | 11 47 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝐽 ∃ 𝑣  ∈  𝐾 ( 𝐴  ∈  𝑢  ∧  𝐵  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) ) |