Step |
Hyp |
Ref |
Expression |
1 |
|
txcnpi.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
txcnpi.2 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
txcnpi.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
4 |
|
txcnpi.4 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) |
5 |
|
txcnpi.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
6 |
|
txcnpi.6 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
7 |
|
txcnpi.7 |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝑈 ) |
8 |
|
df-ov |
⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) |
9 |
8 7
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝑈 ) |
10 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∧ 𝑈 ∈ 𝐿 ∧ ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝑈 ) → ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ) |
11 |
3 4 9 10
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ) |
12 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐾 ) = ∪ ( 𝐽 ×t 𝐾 ) |
13 |
|
eqid |
⊢ ∪ 𝐿 = ∪ 𝐿 |
14 |
12 13
|
cnpf |
⊢ ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
17 |
16
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → Fun 𝐹 ) |
18 |
|
elssuni |
⊢ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) → 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) |
19 |
15
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ∪ ( 𝐽 ×t 𝐾 ) ) |
20 |
19
|
sseq2d |
⊢ ( 𝜑 → ( 𝑤 ⊆ dom 𝐹 ↔ 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) ) |
21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) → 𝑤 ⊆ dom 𝐹 ) |
22 |
18 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → 𝑤 ⊆ dom 𝐹 ) |
23 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
24 |
17 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
25 |
24
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
26 |
|
eltx |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
27 |
1 2 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
28 |
27
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
29 |
|
eleq1 |
⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
30 |
29
|
anbi1d |
⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
31 |
30
|
2rexbidv |
⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
32 |
31
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
33 |
|
sstr2 |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ 𝑤 → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
34 |
33
|
com12 |
⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( 𝑢 × 𝑣 ) ⊆ 𝑤 → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
35 |
34
|
anim2d |
⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
36 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ) |
37 |
36
|
anbi1i |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
38 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ↔ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
39 |
35 37 38
|
3imtr4g |
⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
40 |
39
|
reximdv |
⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
41 |
40
|
reximdv |
⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
42 |
41
|
com12 |
⊢ ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
43 |
32 42
|
syl6 |
⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) ) |
44 |
43
|
impd |
⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
45 |
28 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
46 |
25 45
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
47 |
46
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
48 |
11 47
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |