Step |
Hyp |
Ref |
Expression |
1 |
|
txdis1cn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
txdis1cn.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
txdis1cn.k |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
4 |
|
txdis1cn.f |
⊢ ( 𝜑 → 𝐹 Fn ( 𝑋 × 𝑌 ) ) |
5 |
|
txdis1cn.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) |
7 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
10 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
11 |
6 9 5 10
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
12 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) |
13 |
12
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ↔ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
14 |
11 13
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) |
16 |
|
ffnov |
⊢ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ↔ ( 𝐹 Fn ( 𝑋 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) ∈ ∪ 𝐾 ) ) |
17 |
4 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ) |
18 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑢 ) ⊆ dom 𝐹 |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝐹 Fn ( 𝑋 × 𝑌 ) ) |
20 |
19
|
fndmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → dom 𝐹 = ( 𝑋 × 𝑌 ) ) |
21 |
18 20
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ ( 𝑋 × 𝑌 ) ) |
22 |
|
relxp |
⊢ Rel ( 𝑋 × 𝑌 ) |
23 |
|
relss |
⊢ ( ( ◡ 𝐹 “ 𝑢 ) ⊆ ( 𝑋 × 𝑌 ) → ( Rel ( 𝑋 × 𝑌 ) → Rel ( ◡ 𝐹 “ 𝑢 ) ) ) |
24 |
21 22 23
|
mpisyl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → Rel ( ◡ 𝐹 “ 𝑢 ) ) |
25 |
|
elpreima |
⊢ ( 𝐹 Fn ( 𝑋 × 𝑌 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ) ) |
26 |
19 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ) ) |
27 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) |
28 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) |
29 |
28
|
eqcomi |
⊢ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) = ( 𝑥 𝐹 𝑧 ) |
30 |
29
|
eleq1i |
⊢ ( ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) |
31 |
27 30
|
anbi12i |
⊢ ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
32 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑥 ∈ 𝑋 ) |
33 |
|
snelpwi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ 𝒫 𝑋 ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
35 |
12
|
mptpreima |
⊢ ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } |
36 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
37 |
36
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑢 ∈ 𝐾 ) |
39 |
|
cnima |
⊢ ( ( ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) ∈ 𝐽 ) |
40 |
37 38 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( ◡ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝐹 𝑦 ) ) “ 𝑢 ) ∈ 𝐽 ) |
41 |
35 40
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ∈ 𝐽 ) |
42 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 𝑧 ∈ 𝑌 ) |
43 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) |
44 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
45 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
46 |
44 45
|
mpbiran |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) |
47 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
49 |
48
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ↔ ( 𝑧 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
50 |
46 49
|
bitri |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑧 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) |
51 |
42 43 50
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
52 |
|
relxp |
⊢ Rel ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) |
53 |
52
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → Rel ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
54 |
|
opelxp |
⊢ ( 〈 𝑛 , 𝑚 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ↔ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
55 |
32
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → { 𝑥 } ⊆ 𝑋 ) |
56 |
55
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ 𝑛 ∈ { 𝑥 } ) → 𝑛 ∈ 𝑋 ) |
57 |
56
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑛 ∈ 𝑋 ) |
58 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → 𝑚 ∈ 𝑌 ) |
59 |
58
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑚 ∈ 𝑌 ) |
60 |
57 59
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ) |
61 |
|
df-ov |
⊢ ( 𝑛 𝐹 𝑚 ) = ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) |
62 |
|
elsni |
⊢ ( 𝑛 ∈ { 𝑥 } → 𝑛 = 𝑥 ) |
63 |
62
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 𝑛 = 𝑥 ) |
64 |
63
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝑛 𝐹 𝑚 ) = ( 𝑥 𝐹 𝑚 ) ) |
65 |
61 64
|
eqtr3id |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) = ( 𝑥 𝐹 𝑚 ) ) |
66 |
|
oveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑚 ) ) |
67 |
66
|
eleq1d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 ↔ ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) ) |
68 |
67
|
elrab |
⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ↔ ( 𝑚 ∈ 𝑌 ∧ ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) ) |
69 |
68
|
simprbi |
⊢ ( 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) |
70 |
69
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝑥 𝐹 𝑚 ) ∈ 𝑢 ) |
71 |
65 70
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) |
72 |
|
elpreima |
⊢ ( 𝐹 Fn ( 𝑋 × 𝑌 ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) |
73 |
4 72
|
syl |
⊢ ( 𝜑 → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) |
74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 〈 𝑛 , 𝑚 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑛 , 𝑚 〉 ) ∈ 𝑢 ) ) ) |
75 |
60 71 74
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) ∧ ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
76 |
75
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( ( 𝑛 ∈ { 𝑥 } ∧ 𝑚 ∈ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) ) |
77 |
54 76
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( 〈 𝑛 , 𝑚 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) → 〈 𝑛 , 𝑚 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) ) ) |
78 |
53 77
|
relssdv |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
79 |
|
xpeq1 |
⊢ ( 𝑎 = { 𝑥 } → ( 𝑎 × 𝑏 ) = ( { 𝑥 } × 𝑏 ) ) |
80 |
79
|
eleq2d |
⊢ ( 𝑎 = { 𝑥 } → ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ) ) |
81 |
79
|
sseq1d |
⊢ ( 𝑎 = { 𝑥 } → ( ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
82 |
80 81
|
anbi12d |
⊢ ( 𝑎 = { 𝑥 } → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ∧ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
83 |
|
xpeq2 |
⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( { 𝑥 } × 𝑏 ) = ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) |
84 |
83
|
eleq2d |
⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ) ) |
85 |
83
|
sseq1d |
⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
86 |
84 85
|
anbi12d |
⊢ ( 𝑏 = { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × 𝑏 ) ∧ ( { 𝑥 } × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ∧ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
87 |
82 86
|
rspc2ev |
⊢ ( ( { 𝑥 } ∈ 𝒫 𝑋 ∧ { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ∈ 𝐽 ∧ ( 〈 𝑥 , 𝑧 〉 ∈ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ∧ ( { 𝑥 } × { 𝑦 ∈ 𝑌 ∣ ( 𝑥 𝐹 𝑦 ) ∈ 𝑢 } ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
88 |
34 41 51 78 87
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
89 |
|
opex |
⊢ 〈 𝑥 , 𝑧 〉 ∈ V |
90 |
|
eleq1 |
⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ↔ 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ) ) |
91 |
90
|
anbi1d |
⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
92 |
91
|
2rexbidv |
⊢ ( 𝑣 = 〈 𝑥 , 𝑧 〉 → ( ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
93 |
89 92
|
elab |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
94 |
88 93
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) |
95 |
94
|
ex |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ∧ ( 𝑥 𝐹 𝑧 ) ∈ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
96 |
31 95
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑧 〉 ) ∈ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
97 |
26 96
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( ◡ 𝐹 “ 𝑢 ) → 〈 𝑥 , 𝑧 〉 ∈ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) ) |
98 |
24 97
|
relssdv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ⊆ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ) |
99 |
|
ssabral |
⊢ ( ( ◡ 𝐹 “ 𝑢 ) ⊆ { 𝑣 ∣ ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
100 |
98 99
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
101 |
|
distopon |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) |
102 |
1 101
|
syl |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ) |
104 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) |
105 |
|
eltx |
⊢ ( ( 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
106 |
103 104 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ↔ ∀ 𝑣 ∈ ( ◡ 𝐹 “ 𝑢 ) ∃ 𝑎 ∈ 𝒫 𝑋 ∃ 𝑏 ∈ 𝐽 ( 𝑣 ∈ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
107 |
100 106
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) |
108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) |
109 |
|
txtopon |
⊢ ( ( 𝒫 𝑋 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
110 |
102 2 109
|
syl2anc |
⊢ ( 𝜑 → ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
111 |
|
iscn |
⊢ ( ( ( 𝒫 𝑋 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) ) ) |
112 |
110 8 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐾 ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝒫 𝑋 ×t 𝐽 ) ) ) ) |
113 |
17 108 112
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝒫 𝑋 ×t 𝐽 ) Cn 𝐾 ) ) |