| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txdis1cn.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | txdis1cn.j | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | txdis1cn.k | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 4 |  | txdis1cn.f | ⊢ ( 𝜑  →  𝐹  Fn  ( 𝑋  ×  𝑌 ) ) | 
						
							| 5 |  | txdis1cn.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 7 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 8 | 3 7 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 10 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪  𝐾 ) | 
						
							| 11 | 6 9 5 10 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪  𝐾 ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) ) | 
						
							| 13 | 12 | fmpt | ⊢ ( ∀ 𝑦  ∈  𝑌 ( 𝑥 𝐹 𝑦 )  ∈  ∪  𝐾  ↔  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) ) : 𝑌 ⟶ ∪  𝐾 ) | 
						
							| 14 | 11 13 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝑌 ( 𝑥 𝐹 𝑦 )  ∈  ∪  𝐾 ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( 𝑥 𝐹 𝑦 )  ∈  ∪  𝐾 ) | 
						
							| 16 |  | ffnov | ⊢ ( 𝐹 : ( 𝑋  ×  𝑌 ) ⟶ ∪  𝐾  ↔  ( 𝐹  Fn  ( 𝑋  ×  𝑌 )  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( 𝑥 𝐹 𝑦 )  ∈  ∪  𝐾 ) ) | 
						
							| 17 | 4 15 16 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : ( 𝑋  ×  𝑌 ) ⟶ ∪  𝐾 ) | 
						
							| 18 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑢 )  ⊆  dom  𝐹 | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  𝐹  Fn  ( 𝑋  ×  𝑌 ) ) | 
						
							| 20 | 19 | fndmd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  dom  𝐹  =  ( 𝑋  ×  𝑌 ) ) | 
						
							| 21 | 18 20 | sseqtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝑢 )  ⊆  ( 𝑋  ×  𝑌 ) ) | 
						
							| 22 |  | relxp | ⊢ Rel  ( 𝑋  ×  𝑌 ) | 
						
							| 23 |  | relss | ⊢ ( ( ◡ 𝐹  “  𝑢 )  ⊆  ( 𝑋  ×  𝑌 )  →  ( Rel  ( 𝑋  ×  𝑌 )  →  Rel  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 24 | 21 22 23 | mpisyl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  Rel  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 25 |  | elpreima | ⊢ ( 𝐹  Fn  ( 𝑋  ×  𝑌 )  →  ( 〈 𝑥 ,  𝑧 〉  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  ∈  𝑢 ) ) ) | 
						
							| 26 | 19 25 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( 〈 𝑥 ,  𝑧 〉  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  ∈  𝑢 ) ) ) | 
						
							| 27 |  | opelxp | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑋  ×  𝑌 )  ↔  ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 ) ) | 
						
							| 28 |  | df-ov | ⊢ ( 𝑥 𝐹 𝑧 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 ) | 
						
							| 29 | 28 | eqcomi | ⊢ ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  =  ( 𝑥 𝐹 𝑧 ) | 
						
							| 30 | 29 | eleq1i | ⊢ ( ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  ∈  𝑢  ↔  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) | 
						
							| 31 | 27 30 | anbi12i | ⊢ ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  ∈  𝑢 )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) ) | 
						
							| 32 |  | simprll | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 33 |  | snelpwi | ⊢ ( 𝑥  ∈  𝑋  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 35 | 12 | mptpreima | ⊢ ( ◡ ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  “  𝑢 )  =  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } | 
						
							| 36 | 5 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 37 | 36 | ad2ant2r | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  𝑢  ∈  𝐾 ) | 
						
							| 39 |  | cnima | ⊢ ( ( ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  ∈  ( 𝐽  Cn  𝐾 )  ∧  𝑢  ∈  𝐾 )  →  ( ◡ ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( ◡ ( 𝑦  ∈  𝑌  ↦  ( 𝑥 𝐹 𝑦 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 41 | 35 40 | eqeltrrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  ∈  𝐽 ) | 
						
							| 42 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 43 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) | 
						
							| 44 |  | vsnid | ⊢ 𝑥  ∈  { 𝑥 } | 
						
							| 45 |  | opelxp | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ↔  ( 𝑥  ∈  { 𝑥 }  ∧  𝑧  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) | 
						
							| 46 | 44 45 | mpbiran | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ↔  𝑧  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑥 𝐹 𝑧 ) ) | 
						
							| 48 | 47 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥 𝐹 𝑦 )  ∈  𝑢  ↔  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) ) | 
						
							| 49 | 48 | elrab | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  ↔  ( 𝑧  ∈  𝑌  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) ) | 
						
							| 50 | 46 49 | bitri | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ↔  ( 𝑧  ∈  𝑌  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) ) | 
						
							| 51 | 42 43 50 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) | 
						
							| 52 |  | relxp | ⊢ Rel  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  Rel  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) | 
						
							| 54 |  | opelxp | ⊢ ( 〈 𝑛 ,  𝑚 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ↔  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) | 
						
							| 55 | 32 | snssd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  { 𝑥 }  ⊆  𝑋 ) | 
						
							| 56 | 55 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  𝑛  ∈  { 𝑥 } )  →  𝑛  ∈  𝑋 ) | 
						
							| 57 | 56 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  𝑛  ∈  𝑋 ) | 
						
							| 58 |  | elrabi | ⊢ ( 𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  𝑚  ∈  𝑌 ) | 
						
							| 59 | 58 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  𝑚  ∈  𝑌 ) | 
						
							| 60 | 57 59 | opelxpd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  〈 𝑛 ,  𝑚 〉  ∈  ( 𝑋  ×  𝑌 ) ) | 
						
							| 61 |  | df-ov | ⊢ ( 𝑛 𝐹 𝑚 )  =  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 ) | 
						
							| 62 |  | elsni | ⊢ ( 𝑛  ∈  { 𝑥 }  →  𝑛  =  𝑥 ) | 
						
							| 63 | 62 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  𝑛  =  𝑥 ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  ( 𝑛 𝐹 𝑚 )  =  ( 𝑥 𝐹 𝑚 ) ) | 
						
							| 65 | 61 64 | eqtr3id | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 )  =  ( 𝑥 𝐹 𝑚 ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑦  =  𝑚  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑥 𝐹 𝑚 ) ) | 
						
							| 67 | 66 | eleq1d | ⊢ ( 𝑦  =  𝑚  →  ( ( 𝑥 𝐹 𝑦 )  ∈  𝑢  ↔  ( 𝑥 𝐹 𝑚 )  ∈  𝑢 ) ) | 
						
							| 68 | 67 | elrab | ⊢ ( 𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  ↔  ( 𝑚  ∈  𝑌  ∧  ( 𝑥 𝐹 𝑚 )  ∈  𝑢 ) ) | 
						
							| 69 | 68 | simprbi | ⊢ ( 𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  ( 𝑥 𝐹 𝑚 )  ∈  𝑢 ) | 
						
							| 70 | 69 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  ( 𝑥 𝐹 𝑚 )  ∈  𝑢 ) | 
						
							| 71 | 65 70 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 )  ∈  𝑢 ) | 
						
							| 72 |  | elpreima | ⊢ ( 𝐹  Fn  ( 𝑋  ×  𝑌 )  →  ( 〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( 〈 𝑛 ,  𝑚 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 )  ∈  𝑢 ) ) ) | 
						
							| 73 | 4 72 | syl | ⊢ ( 𝜑  →  ( 〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( 〈 𝑛 ,  𝑚 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 )  ∈  𝑢 ) ) ) | 
						
							| 74 | 73 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  ( 〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( 〈 𝑛 ,  𝑚 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑛 ,  𝑚 〉 )  ∈  𝑢 ) ) ) | 
						
							| 75 | 60 71 74 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  ∧  ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) )  →  〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( ( 𝑛  ∈  { 𝑥 }  ∧  𝑚  ∈  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  →  〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 77 | 54 76 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( 〈 𝑛 ,  𝑚 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  →  〈 𝑛 ,  𝑚 〉  ∈  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 78 | 53 77 | relssdv | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 79 |  | xpeq1 | ⊢ ( 𝑎  =  { 𝑥 }  →  ( 𝑎  ×  𝑏 )  =  ( { 𝑥 }  ×  𝑏 ) ) | 
						
							| 80 | 79 | eleq2d | ⊢ ( 𝑎  =  { 𝑥 }  →  ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  𝑏 ) ) ) | 
						
							| 81 | 79 | sseq1d | ⊢ ( 𝑎  =  { 𝑥 }  →  ( ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 )  ↔  ( { 𝑥 }  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 82 | 80 81 | anbi12d | ⊢ ( 𝑎  =  { 𝑥 }  →  ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  𝑏 )  ∧  ( { 𝑥 }  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 83 |  | xpeq2 | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  ( { 𝑥 }  ×  𝑏 )  =  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) | 
						
							| 84 | 83 | eleq2d | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  𝑏 )  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } ) ) ) | 
						
							| 85 | 83 | sseq1d | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  ( ( { 𝑥 }  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 )  ↔  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 86 | 84 85 | anbi12d | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  →  ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  𝑏 )  ∧  ( { 𝑥 }  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ∧  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 87 | 82 86 | rspc2ev | ⊢ ( ( { 𝑥 }  ∈  𝒫  𝑋  ∧  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 }  ∈  𝐽  ∧  ( 〈 𝑥 ,  𝑧 〉  ∈  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ∧  ( { 𝑥 }  ×  { 𝑦  ∈  𝑌  ∣  ( 𝑥 𝐹 𝑦 )  ∈  𝑢 } )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) )  →  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 88 | 34 41 51 78 87 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 89 |  | opex | ⊢ 〈 𝑥 ,  𝑧 〉  ∈  V | 
						
							| 90 |  | eleq1 | ⊢ ( 𝑣  =  〈 𝑥 ,  𝑧 〉  →  ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ↔  〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 ) ) ) | 
						
							| 91 | 90 | anbi1d | ⊢ ( 𝑣  =  〈 𝑥 ,  𝑧 〉  →  ( ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) )  ↔  ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 92 | 91 | 2rexbidv | ⊢ ( 𝑣  =  〈 𝑥 ,  𝑧 〉  →  ( ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) )  ↔  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 93 | 89 92 | elab | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) }  ↔  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 94 | 88 93 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  ∧  ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 ) )  →  〈 𝑥 ,  𝑧 〉  ∈  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) } ) | 
						
							| 95 | 94 | ex | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑌 )  ∧  ( 𝑥 𝐹 𝑧 )  ∈  𝑢 )  →  〈 𝑥 ,  𝑧 〉  ∈  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) } ) ) | 
						
							| 96 | 31 95 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ( 〈 𝑥 ,  𝑧 〉  ∈  ( 𝑋  ×  𝑌 )  ∧  ( 𝐹 ‘ 〈 𝑥 ,  𝑧 〉 )  ∈  𝑢 )  →  〈 𝑥 ,  𝑧 〉  ∈  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) } ) ) | 
						
							| 97 | 26 96 | sylbid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( 〈 𝑥 ,  𝑧 〉  ∈  ( ◡ 𝐹  “  𝑢 )  →  〈 𝑥 ,  𝑧 〉  ∈  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) } ) ) | 
						
							| 98 | 24 97 | relssdv | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝑢 )  ⊆  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) } ) | 
						
							| 99 |  | ssabral | ⊢ ( ( ◡ 𝐹  “  𝑢 )  ⊆  { 𝑣  ∣  ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) }  ↔  ∀ 𝑣  ∈  ( ◡ 𝐹  “  𝑢 ) ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 100 | 98 99 | sylib | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ∀ 𝑣  ∈  ( ◡ 𝐹  “  𝑢 ) ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 101 |  | distopon | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 102 | 1 101 | syl | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  𝒫  𝑋  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 104 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  𝐽  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 105 |  | eltx | ⊢ ( ( 𝒫  𝑋  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ∈  ( TopOn ‘ 𝑌 ) )  →  ( ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 )  ↔  ∀ 𝑣  ∈  ( ◡ 𝐹  “  𝑢 ) ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 106 | 103 104 105 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 )  ↔  ∀ 𝑣  ∈  ( ◡ 𝐹  “  𝑢 ) ∃ 𝑎  ∈  𝒫  𝑋 ∃ 𝑏  ∈  𝐽 ( 𝑣  ∈  ( 𝑎  ×  𝑏 )  ∧  ( 𝑎  ×  𝑏 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 107 | 100 106 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐾 )  →  ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 ) ) | 
						
							| 108 | 107 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝐾 ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 ) ) | 
						
							| 109 |  | txtopon | ⊢ ( ( 𝒫  𝑋  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝒫  𝑋  ×t  𝐽 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 110 | 102 2 109 | syl2anc | ⊢ ( 𝜑  →  ( 𝒫  𝑋  ×t  𝐽 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 111 |  | iscn | ⊢ ( ( ( 𝒫  𝑋  ×t  𝐽 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) )  →  ( 𝐹  ∈  ( ( 𝒫  𝑋  ×t  𝐽 )  Cn  𝐾 )  ↔  ( 𝐹 : ( 𝑋  ×  𝑌 ) ⟶ ∪  𝐾  ∧  ∀ 𝑢  ∈  𝐾 ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 ) ) ) ) | 
						
							| 112 | 110 8 111 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( 𝒫  𝑋  ×t  𝐽 )  Cn  𝐾 )  ↔  ( 𝐹 : ( 𝑋  ×  𝑌 ) ⟶ ∪  𝐾  ∧  ∀ 𝑢  ∈  𝐾 ( ◡ 𝐹  “  𝑢 )  ∈  ( 𝒫  𝑋  ×t  𝐽 ) ) ) ) | 
						
							| 113 | 17 108 112 | mpbir2and | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝒫  𝑋  ×t  𝐽 )  Cn  𝐾 ) ) |