| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txflf.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
txflf.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 3 |
|
txflf.l |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑍 ) ) |
| 4 |
|
txflf.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 5 |
|
txflf.g |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) |
| 6 |
|
txflf.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) |
| 7 |
|
vex |
⊢ 𝑢 ∈ V |
| 8 |
|
vex |
⊢ 𝑣 ∈ V |
| 9 |
7 8
|
xpex |
⊢ ( 𝑢 × 𝑣 ) ∈ V |
| 10 |
9
|
rgen2w |
⊢ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V |
| 11 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) |
| 12 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
| 13 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ( 𝐻 “ ℎ ) ⊆ 𝑧 ↔ ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ↔ ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 15 |
12 14
|
imbi12d |
⊢ ( 𝑧 = ( 𝑢 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) ) |
| 16 |
11 15
|
ralrnmpo |
⊢ ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) ) |
| 17 |
10 16
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 18 |
|
opelxp |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) |
| 19 |
18
|
biancomi |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) ) ) |
| 21 |
|
r19.40 |
⊢ ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 22 |
|
raleq |
⊢ ( ℎ = 𝑓 → ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 23 |
22
|
cbvrexvw |
⊢ ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) |
| 24 |
|
raleq |
⊢ ( ℎ = 𝑔 → ( ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 25 |
24
|
cbvrexvw |
⊢ ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) |
| 26 |
23 25
|
anbi12i |
⊢ ( ( ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ ℎ ∈ 𝐿 ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 27 |
21 26
|
sylib |
⊢ ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 28 |
|
reeanv |
⊢ ( ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝐿 ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 29 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) |
| 30 |
29
|
3expb |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) |
| 31 |
3 30
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ) |
| 32 |
|
inss1 |
⊢ ( 𝑓 ∩ 𝑔 ) ⊆ 𝑓 |
| 33 |
|
ssralv |
⊢ ( ( 𝑓 ∩ 𝑔 ) ⊆ 𝑓 → ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 34 |
32 33
|
ax-mp |
⊢ ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) |
| 35 |
|
inss2 |
⊢ ( 𝑓 ∩ 𝑔 ) ⊆ 𝑔 |
| 36 |
|
ssralv |
⊢ ( ( 𝑓 ∩ 𝑔 ) ⊆ 𝑔 → ( ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 → ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) |
| 38 |
34 37
|
anim12i |
⊢ ( ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 39 |
|
raleq |
⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ↔ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 40 |
|
raleq |
⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ↔ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 41 |
39 40
|
anbi12d |
⊢ ( ℎ = ( 𝑓 ∩ 𝑔 ) → ( ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 42 |
41
|
rspcev |
⊢ ( ( ( 𝑓 ∩ 𝑔 ) ∈ 𝐿 ∧ ( ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ( 𝑓 ∩ 𝑔 ) ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 43 |
31 38 42
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) ∧ ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 44 |
43
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿 ) ) → ( ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 45 |
44
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐿 ∃ 𝑔 ∈ 𝐿 ( ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 46 |
28 45
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) → ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 47 |
27 46
|
impbid2 |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 48 |
|
df-ima |
⊢ ( 𝐻 “ ℎ ) = ran ( 𝐻 ↾ ℎ ) |
| 49 |
|
filelss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ ℎ ∈ 𝐿 ) → ℎ ⊆ 𝑍 ) |
| 50 |
3 49
|
sylan |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ℎ ⊆ 𝑍 ) |
| 51 |
6
|
reseq1i |
⊢ ( 𝐻 ↾ ℎ ) = ( ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ↾ ℎ ) |
| 52 |
|
resmpt |
⊢ ( ℎ ⊆ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 53 |
51 52
|
eqtrid |
⊢ ( ℎ ⊆ 𝑍 → ( 𝐻 ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 54 |
50 53
|
syl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( 𝐻 ↾ ℎ ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 55 |
54
|
rneqd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ran ( 𝐻 ↾ ℎ ) = ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 56 |
48 55
|
eqtrid |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( 𝐻 “ ℎ ) = ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) |
| 57 |
56
|
sseq1d |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 58 |
|
opelxp |
⊢ ( 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 59 |
58
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ∀ 𝑛 ∈ ℎ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 60 |
|
eqid |
⊢ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) |
| 61 |
60
|
fmpt |
⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ) |
| 62 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ V |
| 63 |
62 60
|
fnmpti |
⊢ ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) Fn ℎ |
| 64 |
|
df-f |
⊢ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ↔ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) Fn ℎ ∧ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) ) |
| 65 |
63 64
|
mpbiran |
⊢ ( ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) : ℎ ⟶ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 66 |
61 65
|
bitri |
⊢ ( ∀ 𝑛 ∈ ℎ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ) |
| 67 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ ℎ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 68 |
59 66 67
|
3bitr3i |
⊢ ( ran ( 𝑛 ∈ ℎ ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 69 |
57 68
|
bitrdi |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐿 ) → ( ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 70 |
69
|
rexbidva |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ∃ ℎ ∈ 𝐿 ( ∀ 𝑛 ∈ ℎ ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∀ 𝑛 ∈ ℎ ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 71 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 72 |
71
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → Fun 𝐹 ) |
| 73 |
|
filelss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ 𝑍 ) |
| 74 |
3 73
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ 𝑍 ) |
| 75 |
71
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → dom 𝐹 = 𝑍 ) |
| 76 |
74 75
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → 𝑓 ⊆ dom 𝐹 ) |
| 77 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 78 |
72 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 79 |
78
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ) ) |
| 80 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝐺 : 𝑍 ⟶ 𝑌 ) |
| 81 |
80
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → Fun 𝐺 ) |
| 82 |
|
filelss |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ 𝑍 ) |
| 83 |
3 82
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ 𝑍 ) |
| 84 |
80
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → dom 𝐺 = 𝑍 ) |
| 85 |
83 84
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ⊆ dom 𝐺 ) |
| 86 |
|
funimass4 |
⊢ ( ( Fun 𝐺 ∧ 𝑔 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 87 |
81 85 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 88 |
87
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) |
| 89 |
79 88
|
anbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ∀ 𝑛 ∈ 𝑓 ( 𝐹 ‘ 𝑛 ) ∈ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ∀ 𝑛 ∈ 𝑔 ( 𝐺 ‘ 𝑛 ) ∈ 𝑣 ) ) ) |
| 90 |
47 70 89
|
3bitr4d |
⊢ ( 𝜑 → ( ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 91 |
20 90
|
imbi12d |
⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 92 |
|
impexp |
⊢ ( ( ( 𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢 ) → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 93 |
91 92
|
bitrdi |
⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 94 |
93
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 95 |
|
eleq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑣 ) ) |
| 96 |
95
|
ralrab |
⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 97 |
|
r19.21v |
⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 98 |
96 97
|
bitr3i |
⊢ ( ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ( 𝑅 ∈ 𝑢 → ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 99 |
94 98
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 100 |
99
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 101 |
|
eleq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑢 ) ) |
| 102 |
101
|
ralrab |
⊢ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 103 |
100 102
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 105 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 106 |
1 105
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 107 |
|
eleq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑋 ) ) |
| 108 |
107
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝐽 𝑅 ∈ 𝑥 ) |
| 109 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐽 𝑅 ∈ 𝑥 ) |
| 110 |
108 109
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋 ) → { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ) |
| 111 |
106 110
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) → { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ) |
| 112 |
|
toponmax |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
| 113 |
2 112
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
| 114 |
|
eleq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑌 ) ) |
| 115 |
114
|
rspcev |
⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌 ) → ∃ 𝑥 ∈ 𝐾 𝑆 ∈ 𝑥 ) |
| 116 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐾 𝑆 ∈ 𝑥 ) |
| 117 |
115 116
|
sylibr |
⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌 ) → { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) |
| 118 |
113 117
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) → { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) |
| 119 |
111 118
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ∧ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) ) |
| 120 |
|
r19.28zv |
⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 121 |
120
|
ralbidv |
⊢ ( { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 122 |
|
r19.27zv |
⊢ ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 123 |
121 122
|
sylan9bbr |
⊢ ( ( { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ≠ ∅ ∧ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ≠ ∅ ) → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 124 |
119 123
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ( ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 125 |
104 124
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 126 |
101
|
ralrab |
⊢ ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) |
| 127 |
95
|
ralrab |
⊢ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) |
| 128 |
126 127
|
anbi12i |
⊢ ( ( ∀ 𝑢 ∈ { 𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥 } ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ∧ ∀ 𝑣 ∈ { 𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥 } ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) |
| 129 |
125 128
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ ( 𝑢 × 𝑣 ) ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 130 |
17 129
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ↔ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 131 |
130
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 132 |
|
opelxp |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) |
| 133 |
132
|
anbi1i |
⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) |
| 134 |
|
an4 |
⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 135 |
131 133 134
|
3bitr4g |
⊢ ( 𝜑 → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 136 |
|
eqid |
⊢ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) |
| 137 |
136
|
txval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 138 |
1 2 137
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 139 |
138
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) = ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ) |
| 140 |
139
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) = ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ) |
| 141 |
140
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ) ) |
| 142 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 143 |
1 2 142
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 144 |
138 143
|
eqeltrrd |
⊢ ( 𝜑 → ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 145 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 146 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
| 147 |
145 146
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 148 |
147 6
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
| 149 |
|
eqid |
⊢ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) |
| 150 |
149
|
flftg |
⊢ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 151 |
144 3 148 150
|
syl3anc |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 152 |
141 151
|
bitrd |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑧 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑧 → ∃ ℎ ∈ 𝐿 ( 𝐻 “ ℎ ) ⊆ 𝑧 ) ) ) ) |
| 153 |
|
isflf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ) ) |
| 154 |
1 3 4 153
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ) ) |
| 155 |
|
isflf |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 156 |
2 3 5 155
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) |
| 157 |
154 156
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑓 ∈ 𝐿 ( 𝐹 “ 𝑓 ) ⊆ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑔 ∈ 𝐿 ( 𝐺 “ 𝑔 ) ⊆ 𝑣 ) ) ) ) ) |
| 158 |
135 152 157
|
3bitr4d |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( ( 𝐽 ×t 𝐾 ) fLimf 𝐿 ) ‘ 𝐻 ) ↔ ( 𝑅 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑆 ∈ ( ( 𝐾 fLimf 𝐿 ) ‘ 𝐺 ) ) ) ) |