| Step |
Hyp |
Ref |
Expression |
| 1 |
|
haustop |
⊢ ( 𝑅 ∈ Haus → 𝑅 ∈ Top ) |
| 2 |
|
haustop |
⊢ ( 𝑆 ∈ Haus → 𝑆 ∈ Top ) |
| 3 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 6 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 7 |
5 6
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 8 |
1 2 7
|
syl2an |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 9 |
8
|
eleq2d |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ↔ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 10 |
8
|
eleq2d |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ↔ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↔ ( 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 12 |
|
neorian |
⊢ ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ↔ ¬ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) |
| 13 |
|
xpopth |
⊢ ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 15 |
14
|
necon3bbid |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ¬ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 ≠ 𝑦 ) ) |
| 16 |
12 15
|
bitrid |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 ≠ 𝑦 ) ) |
| 17 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → 𝑅 ∈ Haus ) |
| 18 |
|
xp1st |
⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 19 |
18
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 21 |
|
xp1st |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 22 |
21
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 24 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) |
| 25 |
5
|
hausnei |
⊢ ( ( 𝑅 ∈ Haus ∧ ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 26 |
17 20 23 24 25
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 27 |
1
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑅 ∈ Top ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑅 ∈ Top ) |
| 29 |
2
|
ad4antlr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑆 ∈ Top ) |
| 30 |
|
simprll |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑢 ∈ 𝑅 ) |
| 31 |
6
|
topopn |
⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 32 |
29 31
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∪ 𝑆 ∈ 𝑆 ) |
| 33 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑢 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) ) → ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 34 |
28 29 30 32 33
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 35 |
|
simprlr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑣 ∈ 𝑅 ) |
| 36 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑣 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) ) → ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 37 |
28 29 35 32 36
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 38 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 41 |
|
simprr1 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑥 ) ∈ 𝑢 ) |
| 42 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 43 |
42
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 45 |
41 44
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) ) |
| 46 |
|
elxp6 |
⊢ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ↔ ( 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) ) ) |
| 47 |
40 45 46
|
sylanbrc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ) |
| 48 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 51 |
|
simprr2 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑣 ) |
| 52 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 53 |
52
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 55 |
51 54
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) ) |
| 56 |
|
elxp6 |
⊢ ( 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ↔ ( 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) ) ) |
| 57 |
50 55 56
|
sylanbrc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ) |
| 58 |
|
simprr3 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 ∩ 𝑣 ) = ∅ ) |
| 59 |
58
|
xpeq1d |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 𝑢 ∩ 𝑣 ) × ∪ 𝑆 ) = ( ∅ × ∪ 𝑆 ) ) |
| 60 |
|
xpindir |
⊢ ( ( 𝑢 ∩ 𝑣 ) × ∪ 𝑆 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) |
| 61 |
|
0xp |
⊢ ( ∅ × ∪ 𝑆 ) = ∅ |
| 62 |
59 60 61
|
3eqtr3g |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) |
| 63 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ) ) |
| 64 |
|
ineq1 |
⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( 𝑧 ∩ 𝑤 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) ) |
| 65 |
64
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ) |
| 66 |
63 65
|
3anbi13d |
⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ) ) |
| 67 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ) ) |
| 68 |
|
ineq2 |
⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ↔ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) |
| 70 |
67 69
|
3anbi23d |
⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) ) |
| 71 |
66 70
|
rspc2ev |
⊢ ( ( ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 72 |
34 37 47 57 62 71
|
syl113anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 73 |
72
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ) → ( ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 74 |
73
|
rexlimdvva |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 75 |
26 74
|
mpd |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 76 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → 𝑆 ∈ Haus ) |
| 77 |
43
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 78 |
53
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 79 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) |
| 80 |
6
|
hausnei |
⊢ ( ( 𝑆 ∈ Haus ∧ ( ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 81 |
76 77 78 79 80
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 82 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑅 ∈ Top ) |
| 83 |
2
|
ad4antlr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑆 ∈ Top ) |
| 84 |
5
|
topopn |
⊢ ( 𝑅 ∈ Top → ∪ 𝑅 ∈ 𝑅 ) |
| 85 |
82 84
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∪ 𝑅 ∈ 𝑅 ) |
| 86 |
|
simprll |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑢 ∈ 𝑆 ) |
| 87 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ∪ 𝑅 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆 ) ) → ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 88 |
82 83 85 86 87
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 89 |
|
simprlr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑣 ∈ 𝑆 ) |
| 90 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ∪ 𝑅 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ) → ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 91 |
82 83 85 89 90
|
syl22anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 92 |
39
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 93 |
19
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 94 |
|
simprr1 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) |
| 95 |
93 94
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) ) |
| 96 |
|
elxp6 |
⊢ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ↔ ( 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∧ ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) ) ) |
| 97 |
92 95 96
|
sylanbrc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ) |
| 98 |
49
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 99 |
22
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 100 |
|
simprr2 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) |
| 101 |
99 100
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) ) |
| 102 |
|
elxp6 |
⊢ ( 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ↔ ( 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∧ ( ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) ) ) |
| 103 |
98 101 102
|
sylanbrc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ) |
| 104 |
|
simprr3 |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 ∩ 𝑣 ) = ∅ ) |
| 105 |
104
|
xpeq2d |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × ( 𝑢 ∩ 𝑣 ) ) = ( ∪ 𝑅 × ∅ ) ) |
| 106 |
|
xpindi |
⊢ ( ∪ 𝑅 × ( 𝑢 ∩ 𝑣 ) ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) |
| 107 |
|
xp0 |
⊢ ( ∪ 𝑅 × ∅ ) = ∅ |
| 108 |
105 106 107
|
3eqtr3g |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) |
| 109 |
|
eleq2 |
⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ) ) |
| 110 |
|
ineq1 |
⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( 𝑧 ∩ 𝑤 ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) ) |
| 111 |
110
|
eqeq1d |
⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ) |
| 112 |
109 111
|
3anbi13d |
⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ) ) |
| 113 |
|
eleq2 |
⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ) ) |
| 114 |
|
ineq2 |
⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) ) |
| 115 |
114
|
eqeq1d |
⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ↔ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) |
| 116 |
113 115
|
3anbi23d |
⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) ) |
| 117 |
112 116
|
rspc2ev |
⊢ ( ( ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 118 |
88 91 97 103 108 117
|
syl113anc |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 119 |
118
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 120 |
119
|
rexlimdvva |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 121 |
81 120
|
mpd |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 122 |
75 121
|
jaodan |
⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 123 |
122
|
ex |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 124 |
16 123
|
sylbird |
⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 125 |
124
|
ex |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 126 |
11 125
|
sylbird |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 127 |
126
|
ralrimivv |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 128 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
| 129 |
128
|
ishaus |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Haus ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 130 |
4 127 129
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑅 ×t 𝑆 ) ∈ Haus ) |