Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
2 |
|
indistop |
⊢ { ∅ , 𝐴 } ∈ Top |
3 |
|
indistop |
⊢ { ∅ , 𝐵 } ∈ Top |
4 |
|
eltx |
⊢ ( ( { ∅ , 𝐴 } ∈ Top ∧ { ∅ , 𝐵 } ∈ Top ) → ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) |
6 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
7 |
5 6
|
sylbi |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
8 |
|
elssuni |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ) |
9 |
|
indisuni |
⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } |
10 |
|
indisuni |
⊢ ( I ‘ 𝐵 ) = ∪ { ∅ , 𝐵 } |
11 |
2 3 9 10
|
txunii |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
12 |
8 11
|
sseqtrrdi |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
14 |
|
ne0i |
⊢ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) |
16 |
|
xpnz |
⊢ ( ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ↔ ( 𝑧 × 𝑤 ) ≠ ∅ ) |
17 |
15 16
|
sylibr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ) |
18 |
17
|
simpld |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ≠ ∅ ) |
19 |
18
|
neneqd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑧 = ∅ ) |
20 |
|
simpll |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , 𝐴 } ) |
21 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |
22 |
20 21
|
eleqtrrdi |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } ) |
23 |
|
elpri |
⊢ ( 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) |
25 |
24
|
ord |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑧 = ∅ → 𝑧 = ( I ‘ 𝐴 ) ) ) |
26 |
19 25
|
mpd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 = ( I ‘ 𝐴 ) ) |
27 |
17
|
simprd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ≠ ∅ ) |
28 |
27
|
neneqd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑤 = ∅ ) |
29 |
|
simplr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , 𝐵 } ) |
30 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐵 ) } = { ∅ , 𝐵 } |
31 |
29 30
|
eleqtrrdi |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } ) |
32 |
|
elpri |
⊢ ( 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) |
34 |
33
|
ord |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑤 = ∅ → 𝑤 = ( I ‘ 𝐵 ) ) ) |
35 |
28 34
|
mpd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 = ( I ‘ 𝐵 ) ) |
36 |
26 35
|
xpeq12d |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
37 |
|
simprr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) |
38 |
36 37
|
eqsstrrd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
39 |
38
|
adantll |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
40 |
13 39
|
eqssd |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
41 |
40
|
ex |
⊢ ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) → ( ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
42 |
41
|
rexlimdvva |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
43 |
7 42
|
syld |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
44 |
43
|
exlimdv |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
45 |
1 44
|
syl5bi |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ¬ 𝑥 = ∅ → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
46 |
45
|
orrd |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
47 |
|
vex |
⊢ 𝑥 ∈ V |
48 |
47
|
elpr |
⊢ ( 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
49 |
46 48
|
sylibr |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ) |
50 |
49
|
ssriv |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
51 |
9
|
toptopon |
⊢ ( { ∅ , 𝐴 } ∈ Top ↔ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ) |
52 |
2 51
|
mpbi |
⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) |
53 |
10
|
toptopon |
⊢ ( { ∅ , 𝐵 } ∈ Top ↔ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) |
54 |
3 53
|
mpbi |
⊢ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) |
55 |
|
txtopon |
⊢ ( ( { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ∧ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) → ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
56 |
52 54 55
|
mp2an |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
57 |
|
topgele |
⊢ ( ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) → ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
58 |
56 57
|
ax-mp |
⊢ ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
59 |
58
|
simpli |
⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
60 |
50 59
|
eqssi |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
61 |
|
txindislem |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |
62 |
61
|
preq2i |
⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } = { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } |
63 |
|
indislem |
⊢ { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } = { ∅ , ( 𝐴 × 𝐵 ) } |
64 |
60 62 63
|
3eqtri |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( 𝐴 × 𝐵 ) } |