Step |
Hyp |
Ref |
Expression |
1 |
|
0xp |
⊢ ( ∅ × ( I ‘ 𝐵 ) ) = ∅ |
2 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ ) |
3 |
2
|
xpeq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ∅ × ( I ‘ 𝐵 ) ) ) |
4 |
|
simpr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
5 |
4
|
xpeq2d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
6 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
8 |
7
|
fveq2d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
9 |
|
0ex |
⊢ ∅ ∈ V |
10 |
|
fvi |
⊢ ( ∅ ∈ V → ( I ‘ ∅ ) = ∅ ) |
11 |
9 10
|
ax-mp |
⊢ ( I ‘ ∅ ) = ∅ |
12 |
8 11
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
13 |
|
dmexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V ) |
14 |
|
dmxp |
⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
15 |
14
|
eleq1d |
⊢ ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) ) |
16 |
13 15
|
syl5ib |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
17 |
16
|
con3d |
⊢ ( 𝐵 ≠ ∅ → ( ¬ 𝐴 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
18 |
17
|
impcom |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
19 |
|
fvprc |
⊢ ( ¬ ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
20 |
18 19
|
syl |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
21 |
12 20
|
pm2.61dane |
⊢ ( ¬ 𝐴 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
22 |
1 3 21
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
23 |
|
xp0 |
⊢ ( ( I ‘ 𝐴 ) × ∅ ) = ∅ |
24 |
|
fvprc |
⊢ ( ¬ 𝐵 ∈ V → ( I ‘ 𝐵 ) = ∅ ) |
25 |
24
|
xpeq2d |
⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ( I ‘ 𝐴 ) × ∅ ) ) |
26 |
|
simpr |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
27 |
26
|
xpeq1d |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
28 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
29 |
27 28
|
eqtrdi |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
30 |
29
|
fveq2d |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
31 |
30 11
|
eqtrdi |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
32 |
|
rnexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ran ( 𝐴 × 𝐵 ) ∈ V ) |
33 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
34 |
33
|
eleq1d |
⊢ ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
35 |
32 34
|
syl5ib |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
36 |
35
|
con3d |
⊢ ( 𝐴 ≠ ∅ → ( ¬ 𝐵 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
37 |
36
|
impcom |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
38 |
37 19
|
syl |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
39 |
31 38
|
pm2.61dane |
⊢ ( ¬ 𝐵 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
40 |
23 25 39
|
3eqtr4a |
⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
41 |
|
fvi |
⊢ ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 ) |
42 |
|
fvi |
⊢ ( 𝐵 ∈ V → ( I ‘ 𝐵 ) = 𝐵 ) |
43 |
|
xpeq12 |
⊢ ( ( ( I ‘ 𝐴 ) = 𝐴 ∧ ( I ‘ 𝐵 ) = 𝐵 ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
44 |
41 42 43
|
syl2an |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
45 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V ) |
46 |
|
fvi |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
47 |
45 46
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
48 |
44 47
|
eqtr4d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
49 |
22 40 48
|
ecase |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |