| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xp | ⊢ ( ∅  ×  (  I  ‘ 𝐵 ) )  =  ∅ | 
						
							| 2 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  (  I  ‘ 𝐴 )  =  ∅ ) | 
						
							| 3 | 2 | xpeq1d | ⊢ ( ¬  𝐴  ∈  V  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  ( ∅  ×  (  I  ‘ 𝐵 ) ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 5 | 4 | xpeq2d | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  =  ∅ )  →  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  ∅ ) ) | 
						
							| 6 |  | xp0 | ⊢ ( 𝐴  ×  ∅ )  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  =  ∅ )  →  ( 𝐴  ×  𝐵 )  =  ∅ ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  =  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  (  I  ‘ ∅ ) ) | 
						
							| 9 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 10 |  | fvi | ⊢ ( ∅  ∈  V  →  (  I  ‘ ∅ )  =  ∅ ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ (  I  ‘ ∅ )  =  ∅ | 
						
							| 12 | 8 11 | eqtrdi | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  =  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 13 |  | dmexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  dom  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 14 |  | dmxp | ⊢ ( 𝐵  ≠  ∅  →  dom  ( 𝐴  ×  𝐵 )  =  𝐴 ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝐵  ≠  ∅  →  ( dom  ( 𝐴  ×  𝐵 )  ∈  V  ↔  𝐴  ∈  V ) ) | 
						
							| 16 | 13 15 | imbitrid | ⊢ ( 𝐵  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  V  →  𝐴  ∈  V ) ) | 
						
							| 17 | 16 | con3d | ⊢ ( 𝐵  ≠  ∅  →  ( ¬  𝐴  ∈  V  →  ¬  ( 𝐴  ×  𝐵 )  ∈  V ) ) | 
						
							| 18 | 17 | impcom | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  ≠  ∅ )  →  ¬  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 19 |  | fvprc | ⊢ ( ¬  ( 𝐴  ×  𝐵 )  ∈  V  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ¬  𝐴  ∈  V  ∧  𝐵  ≠  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 21 | 12 20 | pm2.61dane | ⊢ ( ¬  𝐴  ∈  V  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 22 | 1 3 21 | 3eqtr4a | ⊢ ( ¬  𝐴  ∈  V  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  (  I  ‘ ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 23 |  | xp0 | ⊢ ( (  I  ‘ 𝐴 )  ×  ∅ )  =  ∅ | 
						
							| 24 |  | fvprc | ⊢ ( ¬  𝐵  ∈  V  →  (  I  ‘ 𝐵 )  =  ∅ ) | 
						
							| 25 | 24 | xpeq2d | ⊢ ( ¬  𝐵  ∈  V  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  ( (  I  ‘ 𝐴 )  ×  ∅ ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  =  ∅ )  →  𝐴  =  ∅ ) | 
						
							| 27 | 26 | xpeq1d | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  =  ∅ )  →  ( 𝐴  ×  𝐵 )  =  ( ∅  ×  𝐵 ) ) | 
						
							| 28 |  | 0xp | ⊢ ( ∅  ×  𝐵 )  =  ∅ | 
						
							| 29 | 27 28 | eqtrdi | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  =  ∅ )  →  ( 𝐴  ×  𝐵 )  =  ∅ ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  =  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  (  I  ‘ ∅ ) ) | 
						
							| 31 | 30 11 | eqtrdi | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  =  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 32 |  | rnexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  ran  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 33 |  | rnxp | ⊢ ( 𝐴  ≠  ∅  →  ran  ( 𝐴  ×  𝐵 )  =  𝐵 ) | 
						
							| 34 | 33 | eleq1d | ⊢ ( 𝐴  ≠  ∅  →  ( ran  ( 𝐴  ×  𝐵 )  ∈  V  ↔  𝐵  ∈  V ) ) | 
						
							| 35 | 32 34 | imbitrid | ⊢ ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  V  →  𝐵  ∈  V ) ) | 
						
							| 36 | 35 | con3d | ⊢ ( 𝐴  ≠  ∅  →  ( ¬  𝐵  ∈  V  →  ¬  ( 𝐴  ×  𝐵 )  ∈  V ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  ≠  ∅ )  →  ¬  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 38 | 37 19 | syl | ⊢ ( ( ¬  𝐵  ∈  V  ∧  𝐴  ≠  ∅ )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 39 | 31 38 | pm2.61dane | ⊢ ( ¬  𝐵  ∈  V  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ∅ ) | 
						
							| 40 | 23 25 39 | 3eqtr4a | ⊢ ( ¬  𝐵  ∈  V  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  (  I  ‘ ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 41 |  | fvi | ⊢ ( 𝐴  ∈  V  →  (  I  ‘ 𝐴 )  =  𝐴 ) | 
						
							| 42 |  | fvi | ⊢ ( 𝐵  ∈  V  →  (  I  ‘ 𝐵 )  =  𝐵 ) | 
						
							| 43 |  | xpeq12 | ⊢ ( ( (  I  ‘ 𝐴 )  =  𝐴  ∧  (  I  ‘ 𝐵 )  =  𝐵 )  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 44 | 41 42 43 | syl2an | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 45 |  | xpexg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 46 |  | fvi | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  (  I  ‘ ( 𝐴  ×  𝐵 ) )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 48 | 44 47 | eqtr4d | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  (  I  ‘ ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 49 | 22 40 48 | ecase | ⊢ ( (  I  ‘ 𝐴 )  ×  (  I  ‘ 𝐵 ) )  =  (  I  ‘ ( 𝐴  ×  𝐵 ) ) |