Step |
Hyp |
Ref |
Expression |
1 |
|
txlm.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
txlm.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
txlm.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
txlm.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
5 |
|
txlm.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) |
6 |
|
txlm.g |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) |
7 |
|
txlm.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) |
8 |
|
r19.27v |
⊢ ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
9 |
|
r19.28v |
⊢ ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝐽 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
11 |
8 10
|
syl |
⊢ ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) |
13 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
15 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
17 |
|
eqid |
⊢ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) |
18 |
17
|
txval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
19 |
14 16 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
21 |
12 20
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 𝑤 ∈ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) |
23 |
|
tg2 |
⊢ ( ( 𝑤 ∈ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ) |
24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ) |
25 |
|
vex |
⊢ 𝑢 ∈ V |
26 |
|
vex |
⊢ 𝑣 ∈ V |
27 |
25 26
|
xpex |
⊢ ( 𝑢 × 𝑣 ) ∈ V |
28 |
27
|
rgen2w |
⊢ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V |
29 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) |
30 |
|
eleq2 |
⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
31 |
|
sseq1 |
⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( 𝑡 ⊆ 𝑤 ↔ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
32 |
30 31
|
anbi12d |
⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
33 |
29 32
|
rexrnmpo |
⊢ ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V → ( ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
34 |
28 33
|
ax-mp |
⊢ ( ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
35 |
24 34
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
36 |
35
|
ex |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
37 |
|
r19.29 |
⊢ ( ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑢 ∈ 𝐽 ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
38 |
|
r19.29 |
⊢ ( ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐾 ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
39 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) |
40 |
|
opelxp |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) |
41 |
39 40
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) |
42 |
|
pm2.27 |
⊢ ( 𝑅 ∈ 𝑢 → ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
43 |
|
pm2.27 |
⊢ ( 𝑆 ∈ 𝑣 → ( ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
44 |
42 43
|
im2anan9 |
⊢ ( ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
45 |
41 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
46 |
1
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
47 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
48 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑣 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
50 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
51 |
49 50
|
opeq12d |
⊢ ( 𝑛 = 𝑘 → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 = 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ) |
52 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ V |
53 |
51 7 52
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( 𝐻 ‘ 𝑘 ) = 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ) |
54 |
53
|
eleq1d |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
55 |
48 54
|
syl5ibr |
⊢ ( 𝑘 ∈ 𝑍 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ) ) |
56 |
55
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ) ) |
57 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) |
58 |
57
|
sseld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
59 |
56 58
|
syld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
60 |
47 59
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
61 |
60
|
anassrs |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
62 |
61
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
63 |
62
|
reximdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
64 |
46 63
|
syl5bir |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
65 |
45 64
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
66 |
65
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
67 |
66
|
impcomd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) → ( ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
68 |
67
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑣 ∈ 𝐾 ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
69 |
38 68
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
70 |
69
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐽 ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
71 |
37 70
|
syl5 |
⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
72 |
71
|
expcomd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
73 |
36 72
|
syld |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
74 |
73
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
75 |
74
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
76 |
75
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
77 |
11 76
|
syl5 |
⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
79 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
80 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝐾 ∈ Top ) |
81 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑢 ∈ 𝐽 ) |
82 |
|
toponmax |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) |
83 |
4 82
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑌 ∈ 𝐾 ) |
85 |
|
txopn |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
86 |
79 80 81 84 85
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
87 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) ) |
88 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) |
89 |
88
|
rexralbidv |
⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) |
90 |
87 89
|
imbi12d |
⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
91 |
90
|
rspcv |
⊢ ( ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
92 |
86 91
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
93 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑆 ∈ 𝑌 ) |
94 |
|
opelxpi |
⊢ ( ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑌 ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) |
95 |
93 94
|
sylan2 |
⊢ ( ( 𝑅 ∈ 𝑢 ∧ ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) |
96 |
95
|
expcom |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( 𝑅 ∈ 𝑢 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) ) |
97 |
53
|
eleq1d |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑌 ) ) ) |
98 |
|
opelxp1 |
⊢ ( 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
99 |
97 98
|
syl6bi |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
100 |
47 99
|
syl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
101 |
100
|
ralimdva |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
102 |
101
|
reximia |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
104 |
96 103
|
imim12d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
105 |
92 104
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
106 |
105
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
107 |
106
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
108 |
107
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
109 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝐽 ∈ Top ) |
110 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝐾 ∈ Top ) |
111 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
112 |
3 111
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
113 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝑋 ∈ 𝐽 ) |
114 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝑣 ∈ 𝐾 ) |
115 |
|
txopn |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
116 |
109 110 113 114 115
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
117 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
118 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) |
119 |
118
|
rexralbidv |
⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) |
120 |
117 119
|
imbi12d |
⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
121 |
120
|
rspcv |
⊢ ( ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
122 |
116 121
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
123 |
|
opelxpi |
⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑣 ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) |
124 |
123
|
ex |
⊢ ( 𝑅 ∈ 𝑋 → ( 𝑆 ∈ 𝑣 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
125 |
124
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑆 ∈ 𝑣 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
126 |
53
|
eleq1d |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
127 |
|
opelxp2 |
⊢ ( 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) |
128 |
126 127
|
syl6bi |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
129 |
47 128
|
syl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
130 |
129
|
ralimdva |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
131 |
130
|
reximia |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) |
132 |
131
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
133 |
125 132
|
imim12d |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
134 |
122 133
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
135 |
134
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
136 |
135
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
137 |
136
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
138 |
108 137
|
jcad |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
139 |
78 138
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ↔ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
140 |
139
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
141 |
|
opelxp |
⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) |
142 |
141
|
anbi1i |
⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
143 |
140 142
|
bitr4di |
⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
144 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
145 |
3 1 2 5 144
|
lmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
146 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
147 |
4 1 2 6 146
|
lmbrf |
⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
148 |
145 147
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
149 |
|
an4 |
⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
150 |
148 149
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
151 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
152 |
3 4 151
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
153 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
154 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
155 |
153 154
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
156 |
155 7
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
157 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) |
158 |
152 1 2 156 157
|
lmbrf |
⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
159 |
143 150 158
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ 𝐻 ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) ) |