| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  =  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) | 
						
							| 2 | 1 | txbasex | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ∈  V ) | 
						
							| 3 |  | bastg | ⊢ ( ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ∈  V  →  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ⊆  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ⊆  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 ) )  →  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ⊆  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  𝐵 ) | 
						
							| 7 |  | xpeq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢  ×  𝑣 )  =  ( 𝐴  ×  𝑣 ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝐴  ×  𝐵 )  =  ( 𝑢  ×  𝑣 )  ↔  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  𝑣 ) ) ) | 
						
							| 9 |  | xpeq2 | ⊢ ( 𝑣  =  𝐵  →  ( 𝐴  ×  𝑣 )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑣  =  𝐵  →  ( ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  𝑣 )  ↔  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 11 | 8 10 | rspc2ev | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  𝐵 ) )  →  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝐴  ×  𝐵 )  =  ( 𝑢  ×  𝑣 ) ) | 
						
							| 12 | 6 11 | mp3an3 | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝐴  ×  𝐵 )  =  ( 𝑢  ×  𝑣 ) ) | 
						
							| 13 |  | xpexg | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  =  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) | 
						
							| 15 | 14 | elrnmpog | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  ( ( 𝐴  ×  𝐵 )  ∈  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ↔  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝐴  ×  𝐵 )  =  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴  ×  𝐵 )  ∈  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) )  ↔  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝐴  ×  𝐵 )  =  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 17 | 12 16 | mpbird | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ×  𝐵 )  ∈  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐴  ×  𝐵 )  ∈  ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 19 | 5 18 | sseldd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐴  ×  𝐵 )  ∈  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 20 | 1 | txval | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ( 𝑅  ×t  𝑆 )  =  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝑅  ×t  𝑆 )  =  ( topGen ‘ ran  ( 𝑢  ∈  𝑅 ,  𝑣  ∈  𝑆  ↦  ( 𝑢  ×  𝑣 ) ) ) ) | 
						
							| 22 | 19 21 | eleqtrrd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐴  ×  𝐵 )  ∈  ( 𝑅  ×t  𝑆 ) ) |