Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) |
2 |
1
|
txval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
3 |
|
topbas |
⊢ ( 𝑅 ∈ Top → 𝑅 ∈ TopBases ) |
4 |
|
topbas |
⊢ ( 𝑆 ∈ Top → 𝑆 ∈ TopBases ) |
5 |
1
|
txbas |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases ) |
7 |
|
tgcl |
⊢ ( ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases → ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top ) |
9 |
2 8
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |