| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txtube.x | ⊢ 𝑋  =  ∪  𝑅 | 
						
							| 2 |  | txtube.y | ⊢ 𝑌  =  ∪  𝑆 | 
						
							| 3 |  | txtube.r | ⊢ ( 𝜑  →  𝑅  ∈  Comp ) | 
						
							| 4 |  | txtube.s | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 5 |  | txtube.w | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 6 |  | txtube.u | ⊢ ( 𝜑  →  ( 𝑋  ×  { 𝐴 } )  ⊆  𝑈 ) | 
						
							| 7 |  | txtube.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑌 ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ↔  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 ) ) ) | 
						
							| 9 | 8 | anbi1d | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 10 | 9 | 2rexbidv | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 11 |  | eltx | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Top )  →  ( 𝑈  ∈  ( 𝑅  ×t  𝑆 )  ↔  ∀ 𝑦  ∈  𝑈 ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 12 | 3 4 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ∈  ( 𝑅  ×t  𝑆 )  ↔  ∀ 𝑦  ∈  𝑈 ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 13 | 5 12 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑈 ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝑈 ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 𝑦  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) | 
						
							| 15 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑋  ×  { 𝐴 } )  ⊆  𝑈 ) | 
						
							| 16 |  | id | ⊢ ( 𝑥  ∈  𝑋  →  𝑥  ∈  𝑋 ) | 
						
							| 17 |  | snidg | ⊢ ( 𝐴  ∈  𝑌  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 18 | 7 17 | syl | ⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 19 |  | opelxpi | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  { 𝐴 } )  →  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑋  ×  { 𝐴 } ) ) | 
						
							| 20 | 16 18 19 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑋  ×  { 𝐴 } ) ) | 
						
							| 21 | 15 20 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 𝑥 ,  𝐴 〉  ∈  𝑈 ) | 
						
							| 22 | 10 14 21 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) | 
						
							| 23 |  | opelxp | ⊢ ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ↔  ( 𝑥  ∈  𝑢  ∧  𝐴  ∈  𝑣 ) ) | 
						
							| 24 | 23 | anbi1i | ⊢ ( ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( ( 𝑥  ∈  𝑢  ∧  𝐴  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) | 
						
							| 25 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝑢  ∧  𝐴  ∈  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( 𝑥  ∈  𝑢  ∧  ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 26 | 24 25 | bitri | ⊢ ( ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( 𝑥  ∈  𝑢  ∧  ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 27 | 26 | rexbii | ⊢ ( ∃ 𝑣  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ∃ 𝑣  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 28 |  | r19.42v | ⊢ ( ∃ 𝑣  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) )  ↔  ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 29 | 27 28 | bitri | ⊢ ( ∃ 𝑣  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 30 | 29 | rexbii | ⊢ ( ∃ 𝑢  ∈  𝑅 ∃ 𝑣  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑢  ×  𝑣 )  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ∃ 𝑢  ∈  𝑅 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 31 | 22 30 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑢  ∈  𝑅 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑅 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) ) | 
						
							| 33 |  | eleq2 | ⊢ ( 𝑣  =  ( 𝑓 ‘ 𝑢 )  →  ( 𝐴  ∈  𝑣  ↔  𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 34 |  | xpeq2 | ⊢ ( 𝑣  =  ( 𝑓 ‘ 𝑢 )  →  ( 𝑢  ×  𝑣 )  =  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 35 | 34 | sseq1d | ⊢ ( 𝑣  =  ( 𝑓 ‘ 𝑢 )  →  ( ( 𝑢  ×  𝑣 )  ⊆  𝑈  ↔  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) | 
						
							| 36 | 33 35 | anbi12d | ⊢ ( 𝑣  =  ( 𝑓 ‘ 𝑢 )  →  ( ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 )  ↔  ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) | 
						
							| 37 | 1 36 | cmpcovf | ⊢ ( ( 𝑅  ∈  Comp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑅 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑣  ∈  𝑆 ( 𝐴  ∈  𝑣  ∧  ( 𝑢  ×  𝑣 )  ⊆  𝑈 ) ) )  →  ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) ) | 
						
							| 38 | 3 32 37 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) ) | 
						
							| 39 |  | rint0 | ⊢ ( ran  𝑓  =  ∅  →  ( 𝑌  ∩  ∩  ran  𝑓 )  =  𝑌 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  =  ∅ )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  =  𝑌 ) | 
						
							| 41 | 2 | topopn | ⊢ ( 𝑆  ∈  Top  →  𝑌  ∈  𝑆 ) | 
						
							| 42 | 4 41 | syl | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  =  ∅ )  →  𝑌  ∈  𝑆 ) | 
						
							| 44 | 40 43 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  =  ∅ )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  ∈  𝑆 ) | 
						
							| 45 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  𝑆  ∈  Top ) | 
						
							| 46 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑓 : 𝑡 ⟶ 𝑆 ) | 
						
							| 47 | 46 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ran  𝑓  ⊆  𝑆 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ran  𝑓  ⊆  𝑆 ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ran  𝑓  ≠  ∅ ) | 
						
							| 50 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ) | 
						
							| 51 | 50 | elin2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑡  ∈  Fin ) | 
						
							| 52 | 46 | ffnd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑓  Fn  𝑡 ) | 
						
							| 53 |  | dffn4 | ⊢ ( 𝑓  Fn  𝑡  ↔  𝑓 : 𝑡 –onto→ ran  𝑓 ) | 
						
							| 54 | 52 53 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑓 : 𝑡 –onto→ ran  𝑓 ) | 
						
							| 55 |  | fofi | ⊢ ( ( 𝑡  ∈  Fin  ∧  𝑓 : 𝑡 –onto→ ran  𝑓 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 56 | 51 54 55 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ran  𝑓  ∈  Fin ) | 
						
							| 58 |  | fiinopn | ⊢ ( 𝑆  ∈  Top  →  ( ( ran  𝑓  ⊆  𝑆  ∧  ran  𝑓  ≠  ∅  ∧  ran  𝑓  ∈  Fin )  →  ∩  ran  𝑓  ∈  𝑆 ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( 𝑆  ∈  Top  ∧  ( ran  𝑓  ⊆  𝑆  ∧  ran  𝑓  ≠  ∅  ∧  ran  𝑓  ∈  Fin ) )  →  ∩  ran  𝑓  ∈  𝑆 ) | 
						
							| 60 | 45 48 49 57 59 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ∩  ran  𝑓  ∈  𝑆 ) | 
						
							| 61 |  | elssuni | ⊢ ( ∩  ran  𝑓  ∈  𝑆  →  ∩  ran  𝑓  ⊆  ∪  𝑆 ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ∩  ran  𝑓  ⊆  ∪  𝑆 ) | 
						
							| 63 | 62 2 | sseqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ∩  ran  𝑓  ⊆  𝑌 ) | 
						
							| 64 |  | sseqin2 | ⊢ ( ∩  ran  𝑓  ⊆  𝑌  ↔  ( 𝑌  ∩  ∩  ran  𝑓 )  =  ∩  ran  𝑓 ) | 
						
							| 65 | 63 64 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  =  ∩  ran  𝑓 ) | 
						
							| 66 | 65 60 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  ∧  ran  𝑓  ≠  ∅ )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  ∈  𝑆 ) | 
						
							| 67 | 44 66 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  ∈  𝑆 ) | 
						
							| 68 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝐴  ∈  𝑌 ) | 
						
							| 69 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) | 
						
							| 70 |  | simpl | ⊢ ( ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 )  →  𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 71 | 70 | ralimi | ⊢ ( ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 )  →  ∀ 𝑢  ∈  𝑡 𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 72 | 69 71 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∀ 𝑢  ∈  𝑡 𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 73 |  | eliin | ⊢ ( 𝐴  ∈  𝑌  →  ( 𝐴  ∈  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  ↔  ∀ 𝑢  ∈  𝑡 𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 74 | 68 73 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ( 𝐴  ∈  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  ↔  ∀ 𝑢  ∈  𝑡 𝐴  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 75 | 72 74 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝐴  ∈  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 76 |  | fniinfv | ⊢ ( 𝑓  Fn  𝑡  →  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  =  ∩  ran  𝑓 ) | 
						
							| 77 | 52 76 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  =  ∩  ran  𝑓 ) | 
						
							| 78 | 75 77 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝐴  ∈  ∩  ran  𝑓 ) | 
						
							| 79 | 68 78 | elind | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝐴  ∈  ( 𝑌  ∩  ∩  ran  𝑓 ) ) | 
						
							| 80 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑋  =  ∪  𝑡 ) | 
						
							| 81 |  | uniiun | ⊢ ∪  𝑡  =  ∪  𝑢  ∈  𝑡 𝑢 | 
						
							| 82 | 80 81 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  𝑋  =  ∪  𝑢  ∈  𝑡 𝑢 ) | 
						
							| 83 | 82 | xpeq1d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  =  ( ∪  𝑢  ∈  𝑡 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 84 |  | xpiundir | ⊢ ( ∪  𝑢  ∈  𝑡 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  =  ∪  𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) ) | 
						
							| 85 | 83 84 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  =  ∪  𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 86 |  | simpr | ⊢ ( ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 )  →  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) | 
						
							| 87 | 86 | ralimi | ⊢ ( ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 )  →  ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) | 
						
							| 88 | 69 87 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) | 
						
							| 89 |  | inss2 | ⊢ ( 𝑌  ∩  ∩  ran  𝑓 )  ⊆  ∩  ran  𝑓 | 
						
							| 90 | 76 | adantr | ⊢ ( ( 𝑓  Fn  𝑡  ∧  𝑢  ∈  𝑡 )  →  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  =  ∩  ran  𝑓 ) | 
						
							| 91 |  | iinss2 | ⊢ ( 𝑢  ∈  𝑡  →  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  ⊆  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝑓  Fn  𝑡  ∧  𝑢  ∈  𝑡 )  →  ∩  𝑢  ∈  𝑡 ( 𝑓 ‘ 𝑢 )  ⊆  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 93 | 90 92 | eqsstrrd | ⊢ ( ( 𝑓  Fn  𝑡  ∧  𝑢  ∈  𝑡 )  →  ∩  ran  𝑓  ⊆  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 94 | 89 93 | sstrid | ⊢ ( ( 𝑓  Fn  𝑡  ∧  𝑢  ∈  𝑡 )  →  ( 𝑌  ∩  ∩  ran  𝑓 )  ⊆  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 95 |  | xpss2 | ⊢ ( ( 𝑌  ∩  ∩  ran  𝑓 )  ⊆  ( 𝑓 ‘ 𝑢 )  →  ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 96 |  | sstr2 | ⊢ ( ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  →  ( ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈  →  ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) ) | 
						
							| 97 | 94 95 96 | 3syl | ⊢ ( ( 𝑓  Fn  𝑡  ∧  𝑢  ∈  𝑡 )  →  ( ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈  →  ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) ) | 
						
							| 98 | 97 | ralimdva | ⊢ ( 𝑓  Fn  𝑡  →  ( ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈  →  ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) ) | 
						
							| 99 | 52 88 98 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) | 
						
							| 100 |  | iunss | ⊢ ( ∪  𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈  ↔  ∀ 𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∪  𝑢  ∈  𝑡 ( 𝑢  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) | 
						
							| 102 | 85 101 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) | 
						
							| 103 |  | eleq2 | ⊢ ( 𝑢  =  ( 𝑌  ∩  ∩  ran  𝑓 )  →  ( 𝐴  ∈  𝑢  ↔  𝐴  ∈  ( 𝑌  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 104 |  | xpeq2 | ⊢ ( 𝑢  =  ( 𝑌  ∩  ∩  ran  𝑓 )  →  ( 𝑋  ×  𝑢 )  =  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 105 | 104 | sseq1d | ⊢ ( 𝑢  =  ( 𝑌  ∩  ∩  ran  𝑓 )  →  ( ( 𝑋  ×  𝑢 )  ⊆  𝑈  ↔  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) ) | 
						
							| 106 | 103 105 | anbi12d | ⊢ ( 𝑢  =  ( 𝑌  ∩  ∩  ran  𝑓 )  →  ( ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 )  ↔  ( 𝐴  ∈  ( 𝑌  ∩  ∩  ran  𝑓 )  ∧  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) ) ) | 
						
							| 107 | 106 | rspcev | ⊢ ( ( ( 𝑌  ∩  ∩  ran  𝑓 )  ∈  𝑆  ∧  ( 𝐴  ∈  ( 𝑌  ∩  ∩  ran  𝑓 )  ∧  ( 𝑋  ×  ( 𝑌  ∩  ∩  ran  𝑓 ) )  ⊆  𝑈 ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) | 
						
							| 108 | 67 79 102 107 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) | 
						
							| 109 | 108 | expr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  𝑋  =  ∪  𝑡 )  →  ( ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) ) | 
						
							| 110 | 109 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  𝑋  =  ∪  𝑡 )  →  ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) ) | 
						
							| 111 | 110 | expimpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  →  ( ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) ) | 
						
							| 112 | 111 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑆  ∧  ∀ 𝑢  ∈  𝑡 ( 𝐴  ∈  ( 𝑓 ‘ 𝑢 )  ∧  ( 𝑢  ×  ( 𝑓 ‘ 𝑢 ) )  ⊆  𝑈 ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) ) | 
						
							| 113 | 38 112 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  𝑈 ) ) |