Metamath Proof Explorer


Theorem txuni

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses txuni.1 𝑋 = 𝑅
txuni.2 𝑌 = 𝑆
Assertion txuni ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 ) )

Proof

Step Hyp Ref Expression
1 txuni.1 𝑋 = 𝑅
2 txuni.2 𝑌 = 𝑆
3 1 toptopon ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
4 2 toptopon ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ 𝑌 ) )
5 txtopon ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) )
6 3 4 5 syl2anb ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) )
7 toponuni ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 ) )
8 6 7 syl ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 ) )