Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | txuni.1 | ⊢ 𝑋 = ∪ 𝑅 | |
txuni.2 | ⊢ 𝑌 = ∪ 𝑆 | ||
Assertion | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txuni.1 | ⊢ 𝑋 = ∪ 𝑅 | |
2 | txuni.2 | ⊢ 𝑌 = ∪ 𝑆 | |
3 | 1 | toptopon | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
4 | 2 | toptopon | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) |
5 | txtopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
6 | 3 4 5 | syl2anb | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
7 | toponuni | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) | |
8 | 6 7 | syl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |