Metamath Proof Explorer


Theorem txunii

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txunii.1 𝑅 ∈ Top
txunii.2 𝑆 ∈ Top
txunii.3 𝑋 = 𝑅
txunii.4 𝑌 = 𝑆
Assertion txunii ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 )

Proof

Step Hyp Ref Expression
1 txunii.1 𝑅 ∈ Top
2 txunii.2 𝑆 ∈ Top
3 txunii.3 𝑋 = 𝑅
4 txunii.4 𝑌 = 𝑆
5 3 4 txuni ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 ) )
6 1 2 5 mp2an ( 𝑋 × 𝑌 ) = ( 𝑅 ×t 𝑆 )