Metamath Proof Explorer


Theorem tz6.12-1

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004)

Ref Expression
Assertion tz6.12-1 ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( 𝐹𝐴 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 )
2 iota1 ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐴 𝐹 𝑦 ↔ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = 𝑦 ) )
3 2 biimpac ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = 𝑦 )
4 1 3 eqtrid ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( 𝐹𝐴 ) = 𝑦 )