Metamath Proof Explorer


Theorem tz6.12-2

Description: Function value when F is not a function. Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion tz6.12-2 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 )
2 iotanul ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ∅ )
3 1 2 eqtrid ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = ∅ )