Description: Corollary of Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by SN, 23-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | tz6.12c | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) | |
2 | 1 | eqeq1i | ⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = 𝑦 ) |
3 | iota1 | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐴 𝐹 𝑦 ↔ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = 𝑦 ) ) | |
4 | 2 3 | bitr4id | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |