Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
2 |
|
neeq1 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ ↔ 𝑦 ≠ ∅ ) ) |
3 |
|
tz6.12-2 |
⊢ ( ¬ ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
4 |
3
|
necon1ai |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
5 |
|
tz6.12c |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ( ( 𝐹 ‘ 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
7 |
6
|
biimpcd |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
8 |
2 7
|
sylbird |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝑦 → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
9 |
8
|
eqcoms |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) ) |
10 |
|
neeq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝑦 ≠ ∅ ↔ ( 𝐹 ‘ 𝐴 ) ≠ ∅ ) ) |
11 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
12 |
9 10 11
|
3imtr3d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
13 |
1 12
|
vtocle |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
14 |
13
|
a1i |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
15 |
|
neeq1 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
16 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ↔ 𝐴 𝐹 𝐵 ) ) |
17 |
14 15 16
|
3imtr3d |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → ( 𝐵 ≠ ∅ → 𝐴 𝐹 𝐵 ) ) |
18 |
17
|
com12 |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 → 𝐴 𝐹 𝐵 ) ) |