Metamath Proof Explorer


Theorem tz6.26

Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion tz6.26 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )

Proof

Step Hyp Ref Expression
1 wereu2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃! 𝑦𝐵𝑥𝐵 ¬ 𝑥 𝑅 𝑦 )
2 reurex ( ∃! 𝑦𝐵𝑥𝐵 ¬ 𝑥 𝑅 𝑦 → ∃ 𝑦𝐵𝑥𝐵 ¬ 𝑥 𝑅 𝑦 )
3 1 2 syl ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵𝑥𝐵 ¬ 𝑥 𝑅 𝑦 )
4 rabeq0 ( { 𝑥𝐵𝑥 𝑅 𝑦 } = ∅ ↔ ∀ 𝑥𝐵 ¬ 𝑥 𝑅 𝑦 )
5 dfrab3 { 𝑥𝐵𝑥 𝑅 𝑦 } = ( 𝐵 ∩ { 𝑥𝑥 𝑅 𝑦 } )
6 vex 𝑦 ∈ V
7 6 dfpred2 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ( 𝐵 ∩ { 𝑥𝑥 𝑅 𝑦 } )
8 5 7 eqtr4i { 𝑥𝐵𝑥 𝑅 𝑦 } = Pred ( 𝑅 , 𝐵 , 𝑦 )
9 8 eqeq1i ( { 𝑥𝐵𝑥 𝑅 𝑦 } = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
10 4 9 bitr3i ( ∀ 𝑥𝐵 ¬ 𝑥 𝑅 𝑦 ↔ Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
11 10 rexbii ( ∃ 𝑦𝐵𝑥𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )
12 3 11 sylib ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐵𝐴𝐵 ≠ ∅ ) ) → ∃ 𝑦𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ )