Step |
Hyp |
Ref |
Expression |
1 |
|
wereu2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) |
2 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) |
3 |
1 2
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) |
4 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐵 ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) |
5 |
|
dfrab3 |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝑥 𝑅 𝑦 } = ( 𝐵 ∩ { 𝑥 ∣ 𝑥 𝑅 𝑦 } ) |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
6
|
dfpred2 |
⊢ Pred ( 𝑅 , 𝐵 , 𝑦 ) = ( 𝐵 ∩ { 𝑥 ∣ 𝑥 𝑅 𝑦 } ) |
8 |
5 7
|
eqtr4i |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝑥 𝑅 𝑦 } = Pred ( 𝑅 , 𝐵 , 𝑦 ) |
9 |
8
|
eqeq1i |
⊢ ( { 𝑥 ∈ 𝐵 ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
10 |
4 9
|
bitr3i |
⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ↔ Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
11 |
10
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |
12 |
3 11
|
sylib |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐵 , 𝑦 ) = ∅ ) |