Metamath Proof Explorer


Theorem tz7.2

Description: Similar to Theorem 7.2 of TakeutiZaring p. 35, except that the Axiom of Regularity is not required due to the antecedent _E Fr A . (Contributed by NM, 4-May-1994)

Ref Expression
Assertion tz7.2 ( ( Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴 ) → ( 𝐵𝐴𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 trss ( Tr 𝐴 → ( 𝐵𝐴𝐵𝐴 ) )
2 efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴 )
3 eleq1 ( 𝐵 = 𝐴 → ( 𝐵𝐴𝐴𝐴 ) )
4 3 notbid ( 𝐵 = 𝐴 → ( ¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴 ) )
5 2 4 syl5ibrcom ( E Fr 𝐴 → ( 𝐵 = 𝐴 → ¬ 𝐵𝐴 ) )
6 5 necon2ad ( E Fr 𝐴 → ( 𝐵𝐴𝐵𝐴 ) )
7 1 6 anim12ii ( ( Tr 𝐴 ∧ E Fr 𝐴 ) → ( 𝐵𝐴 → ( 𝐵𝐴𝐵𝐴 ) ) )
8 7 3impia ( ( Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴 ) → ( 𝐵𝐴𝐵𝐴 ) )