Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44.1 |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) |
2 |
|
tz7.44.2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) |
3 |
|
tz7.44.3 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) |
4 |
|
tz7.44.4 |
⊢ 𝐹 Fn 𝑋 |
5 |
|
tz7.44.5 |
⊢ Ord 𝑋 |
6 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝐵 ) ) |
7 |
|
reseq2 |
⊢ ( 𝑦 = suc 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ suc 𝐵 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑦 = suc 𝐵 → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑦 = suc 𝐵 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ suc 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
10 |
9 2
|
vtoclga |
⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ‘ suc 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 = ∅ ↔ ( 𝐹 ↾ suc 𝐵 ) = ∅ ) ) |
12 |
|
dmeq |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → dom 𝑥 = dom ( 𝐹 ↾ suc 𝐵 ) ) |
13 |
|
limeq |
⊢ ( dom 𝑥 = dom ( 𝐹 ↾ suc 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
15 |
|
rneq |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ran 𝑥 = ran ( 𝐹 ↾ suc 𝐵 ) ) |
16 |
15
|
unieqd |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ∪ ran 𝑥 = ∪ ran ( 𝐹 ↾ suc 𝐵 ) ) |
17 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom 𝑥 ) ) |
18 |
12
|
unieqd |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ∪ dom 𝑥 = ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
20 |
17 19
|
eqtrd |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
22 |
14 16 21
|
ifbieq12d |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) = if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) |
23 |
11 22
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ suc 𝐵 ) → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ) |
24 |
7
|
eleq1d |
⊢ ( 𝑦 = suc 𝐵 → ( ( 𝐹 ↾ 𝑦 ) ∈ V ↔ ( 𝐹 ↾ suc 𝐵 ) ∈ V ) ) |
25 |
24 3
|
vtoclga |
⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ↾ suc 𝐵 ) ∈ V ) |
26 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
27 |
|
dmeq |
⊢ ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → dom ( 𝐹 ↾ suc 𝐵 ) = dom ∅ ) |
28 |
|
dm0 |
⊢ dom ∅ = ∅ |
29 |
27 28
|
eqtrdi |
⊢ ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → dom ( 𝐹 ↾ suc 𝐵 ) = ∅ ) |
30 |
|
ordsson |
⊢ ( Ord 𝑋 → 𝑋 ⊆ On ) |
31 |
5 30
|
ax-mp |
⊢ 𝑋 ⊆ On |
32 |
|
ordtr |
⊢ ( Ord 𝑋 → Tr 𝑋 ) |
33 |
5 32
|
ax-mp |
⊢ Tr 𝑋 |
34 |
|
trsuc |
⊢ ( ( Tr 𝑋 ∧ suc 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
35 |
33 34
|
mpan |
⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋 ) |
36 |
31 35
|
sselid |
⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ On ) |
37 |
|
sucidg |
⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) |
38 |
36 37
|
syl |
⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ suc 𝐵 ) |
39 |
|
dmres |
⊢ dom ( 𝐹 ↾ suc 𝐵 ) = ( suc 𝐵 ∩ dom 𝐹 ) |
40 |
|
ordelss |
⊢ ( ( Ord 𝑋 ∧ suc 𝐵 ∈ 𝑋 ) → suc 𝐵 ⊆ 𝑋 ) |
41 |
5 40
|
mpan |
⊢ ( suc 𝐵 ∈ 𝑋 → suc 𝐵 ⊆ 𝑋 ) |
42 |
4
|
fndmi |
⊢ dom 𝐹 = 𝑋 |
43 |
41 42
|
sseqtrrdi |
⊢ ( suc 𝐵 ∈ 𝑋 → suc 𝐵 ⊆ dom 𝐹 ) |
44 |
|
df-ss |
⊢ ( suc 𝐵 ⊆ dom 𝐹 ↔ ( suc 𝐵 ∩ dom 𝐹 ) = suc 𝐵 ) |
45 |
43 44
|
sylib |
⊢ ( suc 𝐵 ∈ 𝑋 → ( suc 𝐵 ∩ dom 𝐹 ) = suc 𝐵 ) |
46 |
39 45
|
eqtrid |
⊢ ( suc 𝐵 ∈ 𝑋 → dom ( 𝐹 ↾ suc 𝐵 ) = suc 𝐵 ) |
47 |
38 46
|
eleqtrrd |
⊢ ( suc 𝐵 ∈ 𝑋 → 𝐵 ∈ dom ( 𝐹 ↾ suc 𝐵 ) ) |
48 |
|
eleq2 |
⊢ ( dom ( 𝐹 ↾ suc 𝐵 ) = ∅ → ( 𝐵 ∈ dom ( 𝐹 ↾ suc 𝐵 ) ↔ 𝐵 ∈ ∅ ) ) |
49 |
47 48
|
syl5ibcom |
⊢ ( suc 𝐵 ∈ 𝑋 → ( dom ( 𝐹 ↾ suc 𝐵 ) = ∅ → 𝐵 ∈ ∅ ) ) |
50 |
29 49
|
syl5 |
⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) = ∅ → 𝐵 ∈ ∅ ) ) |
51 |
26 50
|
mtoi |
⊢ ( suc 𝐵 ∈ 𝑋 → ¬ ( 𝐹 ↾ suc 𝐵 ) = ∅ ) |
52 |
51
|
iffalsed |
⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) = if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) |
53 |
|
nlimsucg |
⊢ ( 𝐵 ∈ On → ¬ Lim suc 𝐵 ) |
54 |
36 53
|
syl |
⊢ ( suc 𝐵 ∈ 𝑋 → ¬ Lim suc 𝐵 ) |
55 |
|
limeq |
⊢ ( dom ( 𝐹 ↾ suc 𝐵 ) = suc 𝐵 → ( Lim dom ( 𝐹 ↾ suc 𝐵 ) ↔ Lim suc 𝐵 ) ) |
56 |
46 55
|
syl |
⊢ ( suc 𝐵 ∈ 𝑋 → ( Lim dom ( 𝐹 ↾ suc 𝐵 ) ↔ Lim suc 𝐵 ) ) |
57 |
54 56
|
mtbird |
⊢ ( suc 𝐵 ∈ 𝑋 → ¬ Lim dom ( 𝐹 ↾ suc 𝐵 ) ) |
58 |
57
|
iffalsed |
⊢ ( suc 𝐵 ∈ 𝑋 → if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) |
59 |
46
|
unieqd |
⊢ ( suc 𝐵 ∈ 𝑋 → ∪ dom ( 𝐹 ↾ suc 𝐵 ) = ∪ suc 𝐵 ) |
60 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
61 |
|
ordunisuc |
⊢ ( Ord 𝐵 → ∪ suc 𝐵 = 𝐵 ) |
62 |
36 60 61
|
3syl |
⊢ ( suc 𝐵 ∈ 𝑋 → ∪ suc 𝐵 = 𝐵 ) |
63 |
59 62
|
eqtrd |
⊢ ( suc 𝐵 ∈ 𝑋 → ∪ dom ( 𝐹 ↾ suc 𝐵 ) = 𝐵 ) |
64 |
63
|
fveq2d |
⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) = ( ( 𝐹 ↾ suc 𝐵 ) ‘ 𝐵 ) ) |
65 |
38
|
fvresd |
⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
66 |
64 65
|
eqtrd |
⊢ ( suc 𝐵 ∈ 𝑋 → ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
67 |
66
|
fveq2d |
⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
68 |
52 58 67
|
3eqtrd |
⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
69 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ V |
70 |
68 69
|
eqeltrdi |
⊢ ( suc 𝐵 ∈ 𝑋 → if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ∈ V ) |
71 |
1 23 25 70
|
fvmptd3 |
⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐺 ‘ ( 𝐹 ↾ suc 𝐵 ) ) = if ( ( 𝐹 ↾ suc 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ suc 𝐵 ) , ∪ ran ( 𝐹 ↾ suc 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ suc 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ suc 𝐵 ) ) ) ) ) ) |
72 |
10 71 68
|
3eqtrd |
⊢ ( suc 𝐵 ∈ 𝑋 → ( 𝐹 ‘ suc 𝐵 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |