Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44.1 |
⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) |
2 |
|
tz7.44.2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) |
3 |
|
tz7.44.3 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ↾ 𝑦 ) ∈ V ) |
4 |
|
tz7.44.4 |
⊢ 𝐹 Fn 𝑋 |
5 |
|
tz7.44.5 |
⊢ Ord 𝑋 |
6 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
7 |
|
reseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐵 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) ) |
10 |
9 2
|
vtoclga |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) ) |
12 |
7
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ↾ 𝑦 ) ∈ V ↔ ( 𝐹 ↾ 𝐵 ) ∈ V ) ) |
13 |
12 3
|
vtoclga |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ↾ 𝐵 ) ∈ V ) |
15 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → Lim 𝐵 ) |
16 |
|
nlim0 |
⊢ ¬ Lim ∅ |
17 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
18 |
|
ordelss |
⊢ ( ( Ord 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ⊆ 𝑋 ) |
19 |
5 18
|
mpan |
⊢ ( 𝐵 ∈ 𝑋 → 𝐵 ⊆ 𝑋 ) |
20 |
19
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → 𝐵 ⊆ 𝑋 ) |
21 |
|
fndm |
⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) |
22 |
4 21
|
ax-mp |
⊢ dom 𝐹 = 𝑋 |
23 |
20 22
|
sseqtrrdi |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → 𝐵 ⊆ dom 𝐹 ) |
24 |
|
df-ss |
⊢ ( 𝐵 ⊆ dom 𝐹 ↔ ( 𝐵 ∩ dom 𝐹 ) = 𝐵 ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐵 ∩ dom 𝐹 ) = 𝐵 ) |
26 |
17 25
|
eqtrid |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → dom ( 𝐹 ↾ 𝐵 ) = 𝐵 ) |
27 |
|
dmeq |
⊢ ( ( 𝐹 ↾ 𝐵 ) = ∅ → dom ( 𝐹 ↾ 𝐵 ) = dom ∅ ) |
28 |
|
dm0 |
⊢ dom ∅ = ∅ |
29 |
27 28
|
eqtrdi |
⊢ ( ( 𝐹 ↾ 𝐵 ) = ∅ → dom ( 𝐹 ↾ 𝐵 ) = ∅ ) |
30 |
26 29
|
sylan9req |
⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → 𝐵 = ∅ ) |
31 |
|
limeq |
⊢ ( 𝐵 = ∅ → ( Lim 𝐵 ↔ Lim ∅ ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → ( Lim 𝐵 ↔ Lim ∅ ) ) |
33 |
16 32
|
mtbiri |
⊢ ( ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) ∧ ( 𝐹 ↾ 𝐵 ) = ∅ ) → ¬ Lim 𝐵 ) |
34 |
33
|
ex |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) = ∅ → ¬ Lim 𝐵 ) ) |
35 |
15 34
|
mt2d |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ¬ ( 𝐹 ↾ 𝐵 ) = ∅ ) |
36 |
35
|
iffalsed |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) = if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) |
37 |
|
limeq |
⊢ ( dom ( 𝐹 ↾ 𝐵 ) = 𝐵 → ( Lim dom ( 𝐹 ↾ 𝐵 ) ↔ Lim 𝐵 ) ) |
38 |
26 37
|
syl |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( Lim dom ( 𝐹 ↾ 𝐵 ) ↔ Lim 𝐵 ) ) |
39 |
15 38
|
mpbird |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → Lim dom ( 𝐹 ↾ 𝐵 ) ) |
40 |
39
|
iftrued |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
41 |
36 40
|
eqtrd |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
42 |
|
rnexg |
⊢ ( ( 𝐹 ↾ 𝐵 ) ∈ V → ran ( 𝐹 ↾ 𝐵 ) ∈ V ) |
43 |
|
uniexg |
⊢ ( ran ( 𝐹 ↾ 𝐵 ) ∈ V → ∪ ran ( 𝐹 ↾ 𝐵 ) ∈ V ) |
44 |
14 42 43
|
3syl |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ∪ ran ( 𝐹 ↾ 𝐵 ) ∈ V ) |
45 |
41 44
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ∈ V ) |
46 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 = ∅ ↔ ( 𝐹 ↾ 𝐵 ) = ∅ ) ) |
47 |
|
dmeq |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → dom 𝑥 = dom ( 𝐹 ↾ 𝐵 ) ) |
48 |
|
limeq |
⊢ ( dom 𝑥 = dom ( 𝐹 ↾ 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ 𝐵 ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( Lim dom 𝑥 ↔ Lim dom ( 𝐹 ↾ 𝐵 ) ) ) |
50 |
|
rneq |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ran 𝑥 = ran ( 𝐹 ↾ 𝐵 ) ) |
51 |
50
|
unieqd |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ∪ ran 𝑥 = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
52 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom 𝑥 ) ) |
53 |
47
|
unieqd |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ∪ dom 𝑥 = ∪ dom ( 𝐹 ↾ 𝐵 ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) |
55 |
52 54
|
eqtrd |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) |
57 |
49 51 56
|
ifbieq12d |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) = if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) |
58 |
46 57
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝐹 ↾ 𝐵 ) → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
59 |
58 1
|
fvmptg |
⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ V ∧ if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ∈ V ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
60 |
14 45 59
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = if ( ( 𝐹 ↾ 𝐵 ) = ∅ , 𝐴 , if ( Lim dom ( 𝐹 ↾ 𝐵 ) , ∪ ran ( 𝐹 ↾ 𝐵 ) , ( 𝐻 ‘ ( ( 𝐹 ↾ 𝐵 ) ‘ ∪ dom ( 𝐹 ↾ 𝐵 ) ) ) ) ) ) |
61 |
60 41
|
eqtrd |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝐵 ) ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
62 |
11 61
|
eqtrd |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ∪ ran ( 𝐹 ↾ 𝐵 ) ) |
63 |
|
df-ima |
⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
64 |
63
|
unieqi |
⊢ ∪ ( 𝐹 “ 𝐵 ) = ∪ ran ( 𝐹 ↾ 𝐵 ) |
65 |
62 64
|
eqtr4di |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ Lim 𝐵 ) → ( 𝐹 ‘ 𝐵 ) = ∪ ( 𝐹 “ 𝐵 ) ) |