Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.44lem1.1 |
⊢ 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } |
2 |
|
funopab |
⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } ↔ ∀ 𝑥 ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) ) |
3 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∈ V |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
|
rnexg |
⊢ ( 𝑥 ∈ V → ran 𝑥 ∈ V ) |
6 |
|
uniexg |
⊢ ( ran 𝑥 ∈ V → ∪ ran 𝑥 ∈ V ) |
7 |
4 5 6
|
mp2b |
⊢ ∪ ran 𝑥 ∈ V |
8 |
|
nlim0 |
⊢ ¬ Lim ∅ |
9 |
|
dm0 |
⊢ dom ∅ = ∅ |
10 |
|
limeq |
⊢ ( dom ∅ = ∅ → ( Lim dom ∅ ↔ Lim ∅ ) ) |
11 |
9 10
|
ax-mp |
⊢ ( Lim dom ∅ ↔ Lim ∅ ) |
12 |
8 11
|
mtbir |
⊢ ¬ Lim dom ∅ |
13 |
|
dmeq |
⊢ ( 𝑥 = ∅ → dom 𝑥 = dom ∅ ) |
14 |
|
limeq |
⊢ ( dom 𝑥 = dom ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑥 = ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝑥 = ∅ ∧ Lim dom 𝑥 ) → Lim dom ∅ ) |
17 |
12 16
|
mto |
⊢ ¬ ( 𝑥 = ∅ ∧ Lim dom 𝑥 ) |
18 |
3 7 17
|
moeq3 |
⊢ ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) |
19 |
2 18
|
mpgbir |
⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } |
20 |
1
|
funeqi |
⊢ ( Fun 𝐺 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } ) |
21 |
19 20
|
mpbir |
⊢ Fun 𝐺 |