| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz7.48.1 |
⊢ 𝐹 Fn On |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
2
|
elrn2 |
⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
4 2
|
opeldm |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 𝑥 ∈ dom 𝐹 ) |
| 6 |
1
|
fndmi |
⊢ dom 𝐹 = On |
| 7 |
5 6
|
eleqtrdi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 𝑥 ∈ On ) |
| 8 |
7
|
ancri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → ( 𝑥 ∈ On ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 9 |
|
fnopfvb |
⊢ ( ( 𝐹 Fn On ∧ 𝑥 ∈ On ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 10 |
1 9
|
mpan |
⊢ ( 𝑥 ∈ On → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 11 |
10
|
pm5.32i |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ On ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 12 |
8 11
|
sylibr |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 13 |
12
|
eximi |
⊢ ( ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 14 |
3 13
|
sylbi |
⊢ ( 𝑦 ∈ ran 𝐹 → ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 15 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 17 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 18 |
|
eldifi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 19 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 20 |
18 19
|
syl5ibcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐴 ) ) |
| 21 |
20
|
imim2i |
⊢ ( ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) → ( 𝑥 ∈ On → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ 𝐴 ) ) ) |
| 22 |
21
|
impd |
⊢ ( ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) → ( ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) ) |
| 23 |
17 22
|
syl |
⊢ ( ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) ) |
| 24 |
15 16 23
|
exlimd |
⊢ ( ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) ) |
| 25 |
14 24
|
syl5 |
⊢ ( ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐴 ) ) |
| 26 |
25
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ On ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ran 𝐹 ⊆ 𝐴 ) |