Metamath Proof Explorer


Theorem tz7.48-1

Description: Proposition 7.48(1) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 𝐹 Fn On
Assertion tz7.48-1 ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ran 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 tz7.48.1 𝐹 Fn On
2 vex 𝑦 ∈ V
3 2 elrn2 ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐹 )
4 vex 𝑥 ∈ V
5 4 2 opeldm ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹𝑥 ∈ dom 𝐹 )
6 1 fndmi dom 𝐹 = On
7 5 6 eleqtrdi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹𝑥 ∈ On )
8 7 ancri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 → ( 𝑥 ∈ On ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
9 fnopfvb ( ( 𝐹 Fn On ∧ 𝑥 ∈ On ) → ( ( 𝐹𝑥 ) = 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
10 1 9 mpan ( 𝑥 ∈ On → ( ( 𝐹𝑥 ) = 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
11 10 pm5.32i ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ On ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 ) )
12 8 11 sylibr ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐹 → ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) )
13 12 eximi ( ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐹 → ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) )
14 3 13 sylbi ( 𝑦 ∈ ran 𝐹 → ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) )
15 nfra1 𝑥𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) )
16 nfv 𝑥 𝑦𝐴
17 rsp ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( 𝑥 ∈ On → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) )
18 eldifi ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ 𝐴 )
19 eleq1 ( ( 𝐹𝑥 ) = 𝑦 → ( ( 𝐹𝑥 ) ∈ 𝐴𝑦𝐴 ) )
20 18 19 syl5ibcom ( ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) )
21 20 imim2i ( ( 𝑥 ∈ On → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) → ( 𝑥 ∈ On → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) )
22 21 impd ( ( 𝑥 ∈ On → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) → ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑦𝐴 ) )
23 17 22 syl ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑦𝐴 ) )
24 15 16 23 exlimd ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑦𝐴 ) )
25 14 24 syl5 ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ( 𝑦 ∈ ran 𝐹𝑦𝐴 ) )
26 25 ssrdv ( ∀ 𝑥 ∈ On ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) → ran 𝐹𝐴 )