Metamath Proof Explorer


Theorem tz7.49c

Description: Corollary of Proposition 7.49 of TakeutiZaring p. 51. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypothesis tz7.49c.1 𝐹 Fn On
Assertion tz7.49c ( ( 𝐴𝐵 ∧ ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹𝑥 ) ) ≠ ∅ → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) ) → ∃ 𝑥 ∈ On ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 tz7.49c.1 𝐹 Fn On
2 biid ( ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹𝑥 ) ) ≠ ∅ → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) ↔ ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹𝑥 ) ) ≠ ∅ → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) )
3 1 2 tz7.49 ( ( 𝐴𝐵 ∧ ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹𝑥 ) ) ≠ ∅ → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) ) → ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴 ∖ ( 𝐹𝑦 ) ) ≠ ∅ ∧ ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) )
4 3simpc ( ( ∀ 𝑦𝑥 ( 𝐴 ∖ ( 𝐹𝑦 ) ) ≠ ∅ ∧ ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) → ( ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) )
5 onss ( 𝑥 ∈ On → 𝑥 ⊆ On )
6 fnssres ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ) → ( 𝐹𝑥 ) Fn 𝑥 )
7 1 5 6 sylancr ( 𝑥 ∈ On → ( 𝐹𝑥 ) Fn 𝑥 )
8 df-ima ( 𝐹𝑥 ) = ran ( 𝐹𝑥 )
9 8 eqeq1i ( ( 𝐹𝑥 ) = 𝐴 ↔ ran ( 𝐹𝑥 ) = 𝐴 )
10 9 biimpi ( ( 𝐹𝑥 ) = 𝐴 → ran ( 𝐹𝑥 ) = 𝐴 )
11 7 10 anim12i ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝐴 ) → ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ran ( 𝐹𝑥 ) = 𝐴 ) )
12 11 anim1i ( ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝐴 ) ∧ Fun ( 𝐹𝑥 ) ) → ( ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ran ( 𝐹𝑥 ) = 𝐴 ) ∧ Fun ( 𝐹𝑥 ) ) )
13 dff1o2 ( ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 ↔ ( ( 𝐹𝑥 ) Fn 𝑥 ∧ Fun ( 𝐹𝑥 ) ∧ ran ( 𝐹𝑥 ) = 𝐴 ) )
14 3anan32 ( ( ( 𝐹𝑥 ) Fn 𝑥 ∧ Fun ( 𝐹𝑥 ) ∧ ran ( 𝐹𝑥 ) = 𝐴 ) ↔ ( ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ran ( 𝐹𝑥 ) = 𝐴 ) ∧ Fun ( 𝐹𝑥 ) ) )
15 13 14 bitri ( ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 ↔ ( ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ran ( 𝐹𝑥 ) = 𝐴 ) ∧ Fun ( 𝐹𝑥 ) ) )
16 12 15 sylibr ( ( ( 𝑥 ∈ On ∧ ( 𝐹𝑥 ) = 𝐴 ) ∧ Fun ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 )
17 16 expl ( 𝑥 ∈ On → ( ( ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 ) )
18 4 17 syl5 ( 𝑥 ∈ On → ( ( ∀ 𝑦𝑥 ( 𝐴 ∖ ( 𝐹𝑦 ) ) ≠ ∅ ∧ ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 ) )
19 18 reximia ( ∃ 𝑥 ∈ On ( ∀ 𝑦𝑥 ( 𝐴 ∖ ( 𝐹𝑦 ) ) ≠ ∅ ∧ ( 𝐹𝑥 ) = 𝐴 ∧ Fun ( 𝐹𝑥 ) ) → ∃ 𝑥 ∈ On ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 )
20 3 19 syl ( ( 𝐴𝐵 ∧ ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹𝑥 ) ) ≠ ∅ → ( 𝐹𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹𝑥 ) ) ) ) → ∃ 𝑥 ∈ On ( 𝐹𝑥 ) : 𝑥1-1-onto𝐴 )