Metamath Proof Explorer


Theorem tz7.5

Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of TakeutiZaring p. 36. (Contributed by NM, 18-Feb-2004) (Revised by David Abernethy, 16-Mar-2011)

Ref Expression
Assertion tz7.5 ( ( Ord 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ordwe ( Ord 𝐴 → E We 𝐴 )
2 wefrc ( ( E We 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )
3 1 2 syl3an1 ( ( Ord 𝐴𝐵𝐴𝐵 ≠ ∅ ) → ∃ 𝑥𝐵 ( 𝐵𝑥 ) = ∅ )