Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.12.1 |
⊢ 𝐴 ∈ V |
2 |
|
eqid |
⊢ ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
3 |
1 2
|
tz9.12lem2 |
⊢ suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On |
4 |
3
|
onsuci |
⊢ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On |
5 |
1 2
|
tz9.12lem3 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑦 = suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) ) |
8 |
7
|
rspcev |
⊢ ( ( suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) → ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
9 |
4 5 8
|
sylancr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |