Metamath Proof Explorer


Theorem tz9.12lem1

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
Assertion tz9.12lem1 ( 𝐹𝐴 ) ⊆ On

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 𝐴 ∈ V
2 tz9.12lem.2 𝐹 = ( 𝑧 ∈ V ↦ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
3 imassrn ( 𝐹𝐴 ) ⊆ ran 𝐹
4 2 rnmpt ran 𝐹 = { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } }
5 id ( 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } )
6 ssrab2 { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ⊆ On
7 eqvisset ( 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ V )
8 intex ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ≠ ∅ ↔ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ V )
9 7 8 sylibr ( 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ≠ ∅ )
10 oninton ( ( { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ≠ ∅ ) → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ On )
11 6 9 10 sylancr ( 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } ∈ On )
12 5 11 eqeltrd ( 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → 𝑥 ∈ On )
13 12 rexlimivw ( ∃ 𝑧 ∈ V 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } → 𝑥 ∈ On )
14 13 abssi { 𝑥 ∣ ∃ 𝑧 ∈ V 𝑥 = { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1𝑣 ) } } ⊆ On
15 4 14 eqsstri ran 𝐹 ⊆ On
16 3 15 sstri ( 𝐹𝐴 ) ⊆ On