Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.12lem.1 |
⊢ 𝐴 ∈ V |
2 |
|
tz9.12lem.2 |
⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
3 |
2
|
funmpt2 |
⊢ Fun 𝐹 |
4 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑅1 ‘ 𝑣 ) = ( 𝑅1 ‘ 𝑦 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑣 = 𝑦 → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) |
7 |
|
rabn0 |
⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) |
9 |
|
intex |
⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑧 = 𝑥 → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
14 |
13
|
inteqd |
⊢ ( 𝑧 = 𝑥 → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
15 |
14
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) ) |
16 |
2
|
dmmpt |
⊢ dom 𝐹 = { 𝑧 ∈ V ∣ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V } |
17 |
15 16
|
elrab2 |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥 ∈ V ∧ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) ) |
18 |
11 17
|
mpbiran |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
19 |
10 18
|
sylibr |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → 𝑥 ∈ dom 𝐹 ) |
20 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
21 |
3 19 20
|
sylancr |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
22 |
1 2
|
tz9.12lem2 |
⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |
23 |
1 2
|
tz9.12lem1 |
⊢ ( 𝐹 “ 𝐴 ) ⊆ On |
24 |
|
onsucuni |
⊢ ( ( 𝐹 “ 𝐴 ) ⊆ On → ( 𝐹 “ 𝐴 ) ⊆ suc ∪ ( 𝐹 “ 𝐴 ) ) |
25 |
23 24
|
ax-mp |
⊢ ( 𝐹 “ 𝐴 ) ⊆ suc ∪ ( 𝐹 “ 𝐴 ) |
26 |
25
|
sseli |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ suc ∪ ( 𝐹 “ 𝐴 ) ) |
27 |
|
r1ord2 |
⊢ ( suc ∪ ( 𝐹 “ 𝐴 ) ∈ On → ( ( 𝐹 ‘ 𝑥 ) ∈ suc ∪ ( 𝐹 “ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) |
28 |
22 26 27
|
mpsyl |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
29 |
21 28
|
syl6 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
31 |
14 2
|
fvmptg |
⊢ ( ( 𝑥 ∈ V ∧ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
32 |
11 31
|
mpan |
⊢ ( ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
33 |
9 32
|
sylbi |
⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
34 |
|
ssrab2 |
⊢ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On |
35 |
|
onint |
⊢ ( ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
36 |
34 35
|
mpan |
⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
37 |
33 36
|
eqeltrd |
⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
38 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
39 |
38
|
eleq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
40 |
5
|
cbvrabv |
⊢ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } = { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) } |
41 |
39 40
|
elrab2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
42 |
41
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
43 |
8 37 42
|
3syl |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
30 44
|
sseldd |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
46 |
45
|
exp31 |
⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) ) |
47 |
46
|
com3r |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) ) |
48 |
47
|
rexlimdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) |
49 |
48
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
50 |
|
r1suc |
⊢ ( suc ∪ ( 𝐹 “ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
51 |
22 50
|
ax-mp |
⊢ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) |
52 |
51
|
eleq2i |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
53 |
1
|
elpw |
⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
54 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
55 |
52 53 54
|
3bitri |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
56 |
49 55
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ) |