| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tz9.12lem.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							tz9.12lem.2 | 
							⊢ 𝐹  =  ( 𝑧  ∈  V  ↦  ∩  { 𝑣  ∈  On  ∣  𝑧  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 3 | 
							
								2
							 | 
							funmpt2 | 
							⊢ Fun  𝐹  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑣  =  𝑦  →  ( 𝑅1 ‘ 𝑣 )  =  ( 𝑅1 ‘ 𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							⊢ ( 𝑣  =  𝑦  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝑣 )  ↔  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rspcev | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  ∃ 𝑣  ∈  On 𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅  ↔  ∃ 𝑣  ∈  On 𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylibr | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							intex | 
							⊢ ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅  ↔  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∈  ( 𝑅1 ‘ 𝑣 )  ↔  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rabbidv | 
							⊢ ( 𝑧  =  𝑥  →  { 𝑣  ∈  On  ∣  𝑧  ∈  ( 𝑅1 ‘ 𝑣 ) }  =  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 14 | 
							
								13
							 | 
							inteqd | 
							⊢ ( 𝑧  =  𝑥  →  ∩  { 𝑣  ∈  On  ∣  𝑧  ∈  ( 𝑅1 ‘ 𝑣 ) }  =  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 15 | 
							
								14
							 | 
							eleq1d | 
							⊢ ( 𝑧  =  𝑥  →  ( ∩  { 𝑣  ∈  On  ∣  𝑧  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V  ↔  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V ) )  | 
						
						
							| 16 | 
							
								2
							 | 
							dmmpt | 
							⊢ dom  𝐹  =  { 𝑧  ∈  V  ∣  ∩  { 𝑣  ∈  On  ∣  𝑧  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V }  | 
						
						
							| 17 | 
							
								15 16
							 | 
							elrab2 | 
							⊢ ( 𝑥  ∈  dom  𝐹  ↔  ( 𝑥  ∈  V  ∧  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							mpbiran | 
							⊢ ( 𝑥  ∈  dom  𝐹  ↔  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							sylibr | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  𝑥  ∈  dom  𝐹 )  | 
						
						
							| 20 | 
							
								
							 | 
							funfvima | 
							⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( 𝑥  ∈  𝐴  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 21 | 
							
								3 19 20
							 | 
							sylancr | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  ( 𝑥  ∈  𝐴  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 22 | 
							
								1 2
							 | 
							tz9.12lem2 | 
							⊢ suc  ∪  ( 𝐹  “  𝐴 )  ∈  On  | 
						
						
							| 23 | 
							
								1 2
							 | 
							tz9.12lem1 | 
							⊢ ( 𝐹  “  𝐴 )  ⊆  On  | 
						
						
							| 24 | 
							
								
							 | 
							onsucuni | 
							⊢ ( ( 𝐹  “  𝐴 )  ⊆  On  →  ( 𝐹  “  𝐴 )  ⊆  suc  ∪  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							ax-mp | 
							⊢ ( 𝐹  “  𝐴 )  ⊆  suc  ∪  ( 𝐹  “  𝐴 )  | 
						
						
							| 26 | 
							
								25
							 | 
							sseli | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  suc  ∪  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							r1ord2 | 
							⊢ ( suc  ∪  ( 𝐹  “  𝐴 )  ∈  On  →  ( ( 𝐹 ‘ 𝑥 )  ∈  suc  ∪  ( 𝐹  “  𝐴 )  →  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) )  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) ) )  | 
						
						
							| 28 | 
							
								22 26 27
							 | 
							mpsyl | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹  “  𝐴 )  →  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) )  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 29 | 
							
								21 28
							 | 
							syl6 | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  ( 𝑥  ∈  𝐴  →  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) )  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							imp | 
							⊢ ( ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) )  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 31 | 
							
								14 2
							 | 
							fvmptg | 
							⊢ ( ( 𝑥  ∈  V  ∧  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V )  →  ( 𝐹 ‘ 𝑥 )  =  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 32 | 
							
								11 31
							 | 
							mpan | 
							⊢ ( ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  V  →  ( 𝐹 ‘ 𝑥 )  =  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 33 | 
							
								9 32
							 | 
							sylbi | 
							⊢ ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  =  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 34 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ⊆  On  | 
						
						
							| 35 | 
							
								
							 | 
							onint | 
							⊢ ( ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ⊆  On  ∧  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅ )  →  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							mpan | 
							⊢ ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅  →  ∩  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ∈  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eqeltrd | 
							⊢ ( { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) } )  | 
						
						
							| 38 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑅1 ‘ 𝑦 )  =  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							eleq2d | 
							⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  ↔  𝑥  ∈  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								5
							 | 
							cbvrabv | 
							⊢ { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  =  { 𝑦  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) }  | 
						
						
							| 41 | 
							
								39 40
							 | 
							elrab2 | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							simprbi | 
							⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  { 𝑣  ∈  On  ∣  𝑥  ∈  ( 𝑅1 ‘ 𝑣 ) }  →  𝑥  ∈  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 43 | 
							
								8 37 42
							 | 
							3syl | 
							⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  →  𝑥  ∈  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 45 | 
							
								30 44
							 | 
							sseldd | 
							⊢ ( ( ( 𝑦  ∈  On  ∧  𝑥  ∈  ( 𝑅1 ‘ 𝑦 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							exp31 | 
							⊢ ( 𝑦  ∈  On  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							com3r | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  On  →  ( 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  →  𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							rexlimdv | 
							⊢ ( 𝑥  ∈  𝐴  →  ( ∃ 𝑦  ∈  On 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  →  𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							ralimia | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  On 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  →  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							r1suc | 
							⊢ ( suc  ∪  ( 𝐹  “  𝐴 )  ∈  On  →  ( 𝑅1 ‘ suc  suc  ∪  ( 𝐹  “  𝐴 ) )  =  𝒫  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 51 | 
							
								22 50
							 | 
							ax-mp | 
							⊢ ( 𝑅1 ‘ suc  suc  ∪  ( 𝐹  “  𝐴 ) )  =  𝒫  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							eleq2i | 
							⊢ ( 𝐴  ∈  ( 𝑅1 ‘ suc  suc  ∪  ( 𝐹  “  𝐴 ) )  ↔  𝐴  ∈  𝒫  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 53 | 
							
								1
							 | 
							elpw | 
							⊢ ( 𝐴  ∈  𝒫  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) )  ↔  𝐴  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							dfss3 | 
							⊢ ( 𝐴  ⊆  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) )  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 55 | 
							
								52 53 54
							 | 
							3bitri | 
							⊢ ( 𝐴  ∈  ( 𝑅1 ‘ suc  suc  ∪  ( 𝐹  “  𝐴 ) )  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑅1 ‘ suc  ∪  ( 𝐹  “  𝐴 ) ) )  | 
						
						
							| 56 | 
							
								49 55
							 | 
							sylibr | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  On 𝑥  ∈  ( 𝑅1 ‘ 𝑦 )  →  𝐴  ∈  ( 𝑅1 ‘ suc  suc  ∪  ( 𝐹  “  𝐴 ) ) )  |