Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.13.1 |
⊢ 𝐴 ∈ V |
2 |
|
setind |
⊢ ( ∀ 𝑧 ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) → { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V ) |
3 |
|
ssel |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) ) |
4 |
|
vex |
⊢ 𝑤 ∈ V |
5 |
|
eleq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
7 |
4 6
|
elab |
⊢ ( 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
8 |
3 7
|
syl6ib |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
10 |
|
vex |
⊢ 𝑧 ∈ V |
11 |
10
|
tz9.12 |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
13 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
15 |
10 14
|
elab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
16 |
12 15
|
sylibr |
⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) |
17 |
2 16
|
mpg |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V |
18 |
1 17
|
eleqtrri |
⊢ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } |
19 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
21 |
1 20
|
elab |
⊢ ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
22 |
18 21
|
mpbi |
⊢ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) |