Metamath Proof Explorer


Theorem tz9.1c

Description: Alternate expression for the existence of transitive closures tz9.1 : the intersection of all transitive sets containing A is a set. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypothesis tz9.1.1 𝐴 ∈ V
Assertion tz9.1c { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ∈ V

Proof

Step Hyp Ref Expression
1 tz9.1.1 𝐴 ∈ V
2 eqid ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω )
3 eqid 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) = 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 )
4 1 2 3 trcl ( 𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) )
5 3simpa ( ( 𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) ) → ( 𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) )
6 omex ω ∈ V
7 fvex ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V
8 6 7 iunex 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V
9 sseq2 ( 𝑥 = 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( 𝐴𝑥𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) )
10 treq ( 𝑥 = 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( Tr 𝑥 ↔ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) )
11 9 10 anbi12d ( 𝑥 = 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( ( 𝐴𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) )
12 8 11 spcev ( ( 𝐴 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) → ∃ 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 ) )
13 4 5 12 mp2b 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 )
14 abn0 ( { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ( 𝐴𝑥 ∧ Tr 𝑥 ) )
15 13 14 mpbir { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ≠ ∅
16 intex ( { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ∈ V )
17 15 16 mpbi { 𝑥 ∣ ( 𝐴𝑥 ∧ Tr 𝑥 ) } ∈ V