Metamath Proof Explorer


Theorem ubico

Description: A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017)

Ref Expression
Assertion ubico ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐵 ∈ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < 𝐵 ) → 𝐵 < 𝐵 )
2 simp1 ( ( 𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < 𝐵 ) → 𝐵 ∈ ℝ )
3 2 ltnrd ( ( 𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < 𝐵 ) → ¬ 𝐵 < 𝐵 )
4 1 3 pm2.65i ¬ ( 𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < 𝐵 )
5 elico2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < 𝐵 ) ) )
6 4 5 mtbiri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐵 ∈ ( 𝐴 [,) 𝐵 ) )