| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ubth.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ubth.2 | ⊢ 𝑁  =  ( normCV ‘ 𝑊 ) | 
						
							| 3 |  | ubthlem.3 | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 4 |  | ubthlem.4 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 |  | ubthlem.5 | ⊢ 𝑈  ∈  CBan | 
						
							| 6 |  | ubthlem.6 | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 7 |  | ubthlem.7 | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 8 |  | ubthlem.8 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) | 
						
							| 9 |  | ubthlem.9 | ⊢ 𝐴  =  ( 𝑘  ∈  ℕ  ↦  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 10 |  | rzal | ⊢ ( 𝑇  =  ∅  →  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 ) | 
						
							| 11 | 10 | ralrimivw | ⊢ ( 𝑇  =  ∅  →  ∀ 𝑧  ∈  𝑋 ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 ) | 
						
							| 12 |  | rabid2 | ⊢ ( 𝑋  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ↔  ∀ 𝑧  ∈  𝑋 ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( 𝑇  =  ∅  →  𝑋  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝑇  =  ∅  →  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  =  𝑋 ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑇  =  ∅  →  ( { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 )  ↔  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 16 |  | iinrab | ⊢ ( 𝑇  ≠  ∅  →  ∩  𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑇  ≠  ∅ )  →  ∩  𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 18 |  | id | ⊢ ( 𝑇  ≠  ∅  →  𝑇  ≠  ∅ ) | 
						
							| 19 | 7 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 20 |  | eqid | ⊢ ( IndMet ‘ 𝑊 )  =  ( IndMet ‘ 𝑊 ) | 
						
							| 21 |  | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) )  =  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑈  BLnOp  𝑊 )  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 23 |  | bnnv | ⊢ ( 𝑈  ∈  CBan  →  𝑈  ∈  NrmCVec ) | 
						
							| 24 | 5 23 | ax-mp | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 25 | 3 20 4 21 22 24 6 | blocn2 | ⊢ ( 𝑡  ∈  ( 𝑈  BLnOp  𝑊 )  →  𝑡  ∈  ( 𝐽  Cn  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) | 
						
							| 26 | 1 3 | cbncms | ⊢ ( 𝑈  ∈  CBan  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 27 | 5 26 | ax-mp | ⊢ 𝐷  ∈  ( CMet ‘ 𝑋 ) | 
						
							| 28 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 29 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 30 | 27 28 29 | mp2b | ⊢ 𝐷  ∈  ( ∞Met ‘ 𝑋 ) | 
						
							| 31 | 4 | mopntopon | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ 𝐽  ∈  ( TopOn ‘ 𝑋 ) | 
						
							| 33 |  | eqid | ⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 34 | 33 20 | imsxmet | ⊢ ( 𝑊  ∈  NrmCVec  →  ( IndMet ‘ 𝑊 )  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 35 | 6 34 | ax-mp | ⊢ ( IndMet ‘ 𝑊 )  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 36 | 21 | mopntopon | ⊢ ( ( IndMet ‘ 𝑊 )  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) )  →  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) )  ∈  ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) | 
						
							| 37 | 35 36 | ax-mp | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) )  ∈  ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 38 |  | iscncl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) )  ∈  ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) )  →  ( 𝑡  ∈  ( 𝐽  Cn  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) )  ↔  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 39 | 32 37 38 | mp2an | ⊢ ( 𝑡  ∈  ( 𝐽  Cn  ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) )  ↔  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 40 | 25 39 | sylib | ⊢ ( 𝑡  ∈  ( 𝑈  BLnOp  𝑊 )  →  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 41 | 19 40 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 44 | 43 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 45 | 44 | biantrurd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘  ↔  ( ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑡 ‘ 𝑥 )  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | 
						
							| 47 | 46 | breq1d | ⊢ ( 𝑦  =  ( 𝑡 ‘ 𝑥 )  →  ( ( 𝑁 ‘ 𝑦 )  ≤  𝑘  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 48 | 47 | elrab | ⊢ ( ( 𝑡 ‘ 𝑥 )  ∈  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  ↔  ( ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 49 | 45 48 | bitr4di | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘  ↔  ( 𝑡 ‘ 𝑥 )  ∈  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) | 
						
							| 50 | 49 | pm5.32da | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑥  ∈  𝑋  ∧  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 )  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑡 ‘ 𝑥 )  ∈  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) ) | 
						
							| 51 |  | 2fveq3 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | 
						
							| 52 | 51 | breq1d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 53 | 52 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 54 | 53 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑥  ∈  { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) ) | 
						
							| 55 |  | ffn | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  →  𝑡  Fn  𝑋 ) | 
						
							| 56 |  | elpreima | ⊢ ( 𝑡  Fn  𝑋  →  ( 𝑥  ∈  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } )  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑡 ‘ 𝑥 )  ∈  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) ) | 
						
							| 57 | 43 55 56 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑥  ∈  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } )  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑡 ‘ 𝑥 )  ∈  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) ) | 
						
							| 58 | 50 54 57 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑥  ∈  { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ↔  𝑥  ∈  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) ) | 
						
							| 59 | 58 | eqrdv | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  =  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) | 
						
							| 60 |  | imaeq2 | ⊢ ( 𝑥  =  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  →  ( ◡ 𝑡  “  𝑥 )  =  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } ) ) | 
						
							| 61 | 60 | eleq1d | ⊢ ( 𝑥  =  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  →  ( ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 62 | 41 | simprd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 63 | 62 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑥  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡  “  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 64 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 65 | 64 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  𝑘  ∈  ℝ ) | 
						
							| 66 | 65 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  𝑘  ∈  ℝ* ) | 
						
							| 67 |  | eqid | ⊢ ( 0vec ‘ 𝑊 )  =  ( 0vec ‘ 𝑊 ) | 
						
							| 68 | 33 67 | nvzcl | ⊢ ( 𝑊  ∈  NrmCVec  →  ( 0vec ‘ 𝑊 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 69 | 6 68 | ax-mp | ⊢ ( 0vec ‘ 𝑊 )  ∈  ( BaseSet ‘ 𝑊 ) | 
						
							| 70 | 33 67 2 20 | nvnd | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝑦  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) | 
						
							| 71 | 6 70 | mpan | ⊢ ( 𝑦  ∈  ( BaseSet ‘ 𝑊 )  →  ( 𝑁 ‘ 𝑦 )  =  ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) | 
						
							| 72 |  | xmetsym | ⊢ ( ( ( IndMet ‘ 𝑊 )  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) )  ∧  ( 0vec ‘ 𝑊 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  𝑦  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 )  =  ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) | 
						
							| 73 | 35 69 72 | mp3an12 | ⊢ ( 𝑦  ∈  ( BaseSet ‘ 𝑊 )  →  ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 )  =  ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) | 
						
							| 74 | 71 73 | eqtr4d | ⊢ ( 𝑦  ∈  ( BaseSet ‘ 𝑊 )  →  ( 𝑁 ‘ 𝑦 )  =  ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 75 | 74 | breq1d | ⊢ ( 𝑦  ∈  ( BaseSet ‘ 𝑊 )  →  ( ( 𝑁 ‘ 𝑦 )  ≤  𝑘  ↔  ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 )  ≤  𝑘 ) ) | 
						
							| 76 | 75 | rabbiia | ⊢ { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  =  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 )  ≤  𝑘 } | 
						
							| 77 | 21 76 | blcld | ⊢ ( ( ( IndMet ‘ 𝑊 )  ∈  ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) )  ∧  ( 0vec ‘ 𝑊 )  ∈  ( BaseSet ‘ 𝑊 )  ∧  𝑘  ∈  ℝ* )  →  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) | 
						
							| 78 | 35 69 77 | mp3an12 | ⊢ ( 𝑘  ∈  ℝ*  →  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) | 
						
							| 79 | 66 78 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 }  ∈  ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) | 
						
							| 80 | 61 63 79 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  ( ◡ 𝑡  “  { 𝑦  ∈  ( BaseSet ‘ 𝑊 )  ∣  ( 𝑁 ‘ 𝑦 )  ≤  𝑘 } )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 81 | 59 80 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑡  ∈  𝑇 )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 82 | 81 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 83 |  | iincld | ⊢ ( ( 𝑇  ≠  ∅  ∧  ∀ 𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) )  →  ∩  𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 84 | 18 82 83 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑇  ≠  ∅ )  →  ∩  𝑡  ∈  𝑇 { 𝑧  ∈  𝑋  ∣  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 85 | 17 84 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  𝑇  ≠  ∅ )  →  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 86 | 4 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 87 | 30 86 | ax-mp | ⊢ 𝐽  ∈  Top | 
						
							| 88 | 32 | toponunii | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 89 | 88 | topcld | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 90 | 87 89 | ax-mp | ⊢ 𝑋  ∈  ( Clsd ‘ 𝐽 ) | 
						
							| 91 | 90 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑋  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 92 | 15 85 91 | pm2.61ne | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 93 | 92 9 | fmptd | ⊢ ( 𝜑  →  𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | 
						
							| 94 | 93 | frnd | ⊢ ( 𝜑  →  ran  𝐴  ⊆  ( Clsd ‘ 𝐽 ) ) | 
						
							| 95 | 88 | cldss2 | ⊢ ( Clsd ‘ 𝐽 )  ⊆  𝒫  𝑋 | 
						
							| 96 | 94 95 | sstrdi | ⊢ ( 𝜑  →  ran  𝐴  ⊆  𝒫  𝑋 ) | 
						
							| 97 |  | sspwuni | ⊢ ( ran  𝐴  ⊆  𝒫  𝑋  ↔  ∪  ran  𝐴  ⊆  𝑋 ) | 
						
							| 98 | 96 97 | sylib | ⊢ ( 𝜑  →  ∪  ran  𝐴  ⊆  𝑋 ) | 
						
							| 99 |  | arch | ⊢ ( 𝑐  ∈  ℝ  →  ∃ 𝑘  ∈  ℕ 𝑐  <  𝑘 ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  →  ∃ 𝑘  ∈  ℕ 𝑐  <  𝑘 ) | 
						
							| 101 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  →  𝑐  ∈  ℝ ) | 
						
							| 102 |  | ltle | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝑐  <  𝑘  →  𝑐  ≤  𝑘 ) ) | 
						
							| 103 | 101 64 102 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑐  <  𝑘  →  𝑐  ≤  𝑘 ) ) | 
						
							| 104 | 103 | impr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  →  𝑐  ≤  𝑘 ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑐  ≤  𝑘 ) | 
						
							| 106 | 42 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 107 | 106 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 108 | 33 2 | nvcl | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 109 | 6 107 108 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 110 | 109 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 111 | 110 | adantlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 112 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑐  ∈  ℝ ) | 
						
							| 113 |  | simplrl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑘  ∈  ℕ ) | 
						
							| 114 | 113 64 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑘  ∈  ℝ ) | 
						
							| 115 |  | letr | ⊢ ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  ∧  𝑐  ≤  𝑘 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 116 | 111 112 114 115 | syl3anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  ∧  𝑐  ≤  𝑘 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 117 | 105 116 | mpan2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 118 | 117 | ralimdva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  ( 𝑘  ∈  ℕ  ∧  𝑐  <  𝑘 ) )  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 119 | 118 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑐  <  𝑘  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) ) | 
						
							| 120 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 121 | 120 | rabex | ⊢ { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  V | 
						
							| 122 | 9 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℕ  ∧  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ∈  V )  →  ( 𝐴 ‘ 𝑘 )  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 123 | 121 122 | mpan2 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐴 ‘ 𝑘 )  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 124 | 123 | eleq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  ↔  𝑥  ∈  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) ) | 
						
							| 125 | 52 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 126 | 125 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 }  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 127 | 124 126 | bitrdi | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) ) | 
						
							| 128 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 129 | 128 | biantrurd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘  ↔  ( 𝑥  ∈  𝑋  ∧  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) ) | 
						
							| 130 | 129 | bicomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ∧  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 )  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 131 | 127 130 | sylan9bbr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘 ) ) | 
						
							| 132 | 93 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  Fn  ℕ ) | 
						
							| 134 |  | fnfvelrn | ⊢ ( ( 𝐴  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ‘ 𝑘 )  ∈  ran  𝐴 ) | 
						
							| 135 |  | elssuni | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  ran  𝐴  →  ( 𝐴 ‘ 𝑘 )  ⊆  ∪  ran  𝐴 ) | 
						
							| 136 | 134 135 | syl | ⊢ ( ( 𝐴  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ‘ 𝑘 )  ⊆  ∪  ran  𝐴 ) | 
						
							| 137 | 136 | sseld | ⊢ ( ( 𝐴  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 138 | 133 137 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝐴 ‘ 𝑘 )  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 139 | 131 138 | sylbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ℕ )  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 140 | 139 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑘  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 141 | 119 140 | syl6d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( 𝑐  <  𝑘  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  𝑥  ∈  ∪  ran  𝐴 ) ) ) | 
						
							| 142 | 141 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  →  ( ∃ 𝑘  ∈  ℕ 𝑐  <  𝑘  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  𝑥  ∈  ∪  ran  𝐴 ) ) ) | 
						
							| 143 | 100 142 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  ℝ )  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 144 | 143 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 145 | 144 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  ∀ 𝑥  ∈  𝑋 𝑥  ∈  ∪  ran  𝐴 ) ) | 
						
							| 146 | 8 145 | mpd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 𝑥  ∈  ∪  ran  𝐴 ) | 
						
							| 147 |  | dfss3 | ⊢ ( 𝑋  ⊆  ∪  ran  𝐴  ↔  ∀ 𝑥  ∈  𝑋 𝑥  ∈  ∪  ran  𝐴 ) | 
						
							| 148 | 146 147 | sylibr | ⊢ ( 𝜑  →  𝑋  ⊆  ∪  ran  𝐴 ) | 
						
							| 149 | 98 148 | eqssd | ⊢ ( 𝜑  →  ∪  ran  𝐴  =  𝑋 ) | 
						
							| 150 |  | eqid | ⊢ ( 0vec ‘ 𝑈 )  =  ( 0vec ‘ 𝑈 ) | 
						
							| 151 | 1 150 | nvzcl | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 0vec ‘ 𝑈 )  ∈  𝑋 ) | 
						
							| 152 |  | ne0i | ⊢ ( ( 0vec ‘ 𝑈 )  ∈  𝑋  →  𝑋  ≠  ∅ ) | 
						
							| 153 | 24 151 152 | mp2b | ⊢ 𝑋  ≠  ∅ | 
						
							| 154 | 4 | bcth2 | ⊢ ( ( ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ∧  𝑋  ≠  ∅ )  ∧  ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝐴  =  𝑋 ) )  →  ∃ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅ ) | 
						
							| 155 | 27 153 154 | mpanl12 | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  ∪  ran  𝐴  =  𝑋 )  →  ∃ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅ ) | 
						
							| 156 | 93 149 155 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅ ) | 
						
							| 157 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 158 | 95 157 | sselid | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ∈  𝒫  𝑋 ) | 
						
							| 159 | 158 | elpwid | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 160 | 93 159 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ‘ 𝑛 )  ⊆  𝑋 ) | 
						
							| 161 | 88 | ntrss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴 ‘ 𝑛 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 162 | 87 160 161 | sylancr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 163 | 162 | sseld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  𝑦  ∈  𝑋 ) ) | 
						
							| 164 | 88 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴 ‘ 𝑛 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽 ) | 
						
							| 165 | 87 160 164 | sylancr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽 ) | 
						
							| 166 | 4 | mopni2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 167 | 30 166 | mp3an1 | ⊢ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 168 | 165 167 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 169 |  | elssuni | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  ∪  𝐽 ) | 
						
							| 170 | 169 88 | sseqtrrdi | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  𝐽  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 171 | 165 170 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  𝑋 ) | 
						
							| 172 | 171 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 173 | 88 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐴 ‘ 𝑛 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 174 | 87 160 173 | sylancr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 175 |  | sstr2 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ⊆  ( 𝐴 ‘ 𝑛 )  →  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 176 | 174 175 | syl5com | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 177 | 176 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 178 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 ) | 
						
							| 179 | 178 30 | jctil | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 ) ) | 
						
							| 180 |  | rphalfcl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  ∈  ℝ+ ) | 
						
							| 181 | 180 | rpxrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  ∈  ℝ* ) | 
						
							| 182 |  | rpxr | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ* ) | 
						
							| 183 |  | rphalflt | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  2 )  <  𝑥 ) | 
						
							| 184 | 181 182 183 | 3jca | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝑥  /  2 )  ∈  ℝ*  ∧  𝑥  ∈  ℝ*  ∧  ( 𝑥  /  2 )  <  𝑥 ) ) | 
						
							| 185 |  | eqid | ⊢ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  =  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) } | 
						
							| 186 | 4 185 | blsscls2 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  ( ( 𝑥  /  2 )  ∈  ℝ*  ∧  𝑥  ∈  ℝ*  ∧  ( 𝑥  /  2 )  <  𝑥 ) )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 187 | 179 184 186 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 188 |  | sstr2 | ⊢ ( { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  →  ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝐴 ‘ 𝑛 )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 189 | 187 188 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝐴 ‘ 𝑛 )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 190 | 180 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  /  2 )  ∈  ℝ+ ) | 
						
							| 191 |  | breq2 | ⊢ ( 𝑟  =  ( 𝑥  /  2 )  →  ( ( 𝑦 𝐷 𝑧 )  ≤  𝑟  ↔  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) ) ) | 
						
							| 192 | 191 | rabbidv | ⊢ ( 𝑟  =  ( 𝑥  /  2 )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  =  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) } ) | 
						
							| 193 | 192 | sseq1d | ⊢ ( 𝑟  =  ( 𝑥  /  2 )  →  ( { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 )  ↔  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 194 | 193 | rspcev | ⊢ ( ( ( 𝑥  /  2 )  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 195 | 194 | ex | ⊢ ( ( 𝑥  /  2 )  ∈  ℝ+  →  ( { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 196 | 190 195 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  ( 𝑥  /  2 ) }  ⊆  ( 𝐴 ‘ 𝑛 )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 197 | 177 189 196 | 3syld | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 198 | 197 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  𝑋 )  →  ( ∃ 𝑥  ∈  ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 199 | 172 198 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ( ∃ 𝑥  ∈  ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 200 | 168 199 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 201 | 200 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 202 | 163 201 | jcad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ( 𝑦  ∈  𝑋  ∧  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 203 | 202 | eximdv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∃ 𝑦 𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  →  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 204 |  | n0 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 205 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 206 | 203 204 205 | 3imtr4g | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅  →  ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 207 | 206 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) )  ≠  ∅  →  ∃ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 208 | 156 207 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( 𝐴 ‘ 𝑛 ) ) |