Step |
Hyp |
Ref |
Expression |
1 |
|
ubth.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ubth.2 |
⊢ 𝑁 = ( normCV ‘ 𝑊 ) |
3 |
|
ubthlem.3 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
4 |
|
ubthlem.4 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
5 |
|
ubthlem.5 |
⊢ 𝑈 ∈ CBan |
6 |
|
ubthlem.6 |
⊢ 𝑊 ∈ NrmCVec |
7 |
|
ubthlem.7 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑧 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑢 = 𝑡 → ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑢 = 𝑡 → ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ) ) |
11 |
10
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ) |
12 |
|
breq2 |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑑 = 𝑐 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) |
14 |
11 13
|
syl5bb |
⊢ ( 𝑑 = 𝑐 → ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) ) |
15 |
14
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ) |
16 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
18 |
17
|
rexralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑐 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
19 |
15 18
|
syl5bb |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
20 |
19
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) |
23 |
22 20
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
24 |
|
fveq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 ‘ 𝑑 ) = ( 𝑡 ‘ 𝑑 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝑢 = 𝑡 → ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ) |
26 |
25
|
breq1d |
⊢ ( 𝑢 = 𝑡 → ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ) ) |
27 |
26
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ) |
28 |
|
2fveq3 |
⊢ ( 𝑑 = 𝑧 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑑 = 𝑧 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
31 |
27 30
|
syl5bb |
⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
32 |
31
|
cbvrabv |
⊢ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 } |
33 |
|
breq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝑚 = 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) ) |
35 |
34
|
rabbidv |
⊢ ( 𝑚 = 𝑘 → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
36 |
32 35
|
syl5eq |
⊢ ( 𝑚 = 𝑘 → { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
38 |
1 2 3 4 5 6 21 23 37
|
ubthlem1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) |
39 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
40 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
41 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
42 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑦 ∈ 𝑋 ) |
43 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → 𝑟 ∈ ℝ+ ) |
44 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) |
45 |
1 2 3 4 5 6 39 40 37 41 42 43 44
|
ubthlem2 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) ) ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
46 |
45
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
47 |
46
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋 ) ) → ( ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
48 |
47
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( ( 𝑚 ∈ ℕ ↦ { 𝑑 ∈ 𝑋 ∣ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) ) ≤ 𝑚 } ) ‘ 𝑛 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
49 |
38 48
|
mpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
50 |
49
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑋 ∃ 𝑑 ∈ ℝ ∀ 𝑢 ∈ 𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) ) ≤ 𝑑 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
51 |
20 50
|
syl5bir |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |
52 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) → 𝑑 ∈ ℝ ) |
53 |
|
bnnv |
⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) |
54 |
5 53
|
ax-mp |
⊢ 𝑈 ∈ NrmCVec |
55 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
56 |
1 55
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
57 |
54 56
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
58 |
|
remulcl |
⊢ ( ( 𝑑 ∈ ℝ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
59 |
52 57 58
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
60 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
62 |
61
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
63 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
64 |
|
eqid |
⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) |
65 |
1 63 64
|
blof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
66 |
54 6 65
|
mp3an12 |
⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
67 |
62 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
68 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑥 ∈ 𝑋 ) |
69 |
67 68
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
70 |
63 2
|
nvcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
71 |
6 70
|
mpan |
⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
72 |
69 71
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
73 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) |
74 |
1 63 73
|
nmoxr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
75 |
54 6 74
|
mp3an12 |
⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
76 |
67 75
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ) |
77 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → 𝑑 ∈ ℝ ) |
78 |
1 63 73
|
nmogtmnf |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
79 |
54 6 78
|
mp3an12 |
⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
80 |
67 79
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ) |
81 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
82 |
|
xrre |
⊢ ( ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ* ∧ 𝑑 ∈ ℝ ) ∧ ( -∞ < ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ) |
83 |
76 77 80 81 82
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ) |
84 |
57
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
85 |
|
remulcl |
⊢ ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
86 |
83 84 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
87 |
59
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ) |
88 |
1 55 2 73 64 54 6
|
nmblolbi |
⊢ ( ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
89 |
62 68 88
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
90 |
1 55
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
91 |
54 90
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) |
92 |
57 91
|
jca |
⊢ ( 𝑥 ∈ 𝑋 → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
93 |
92
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
94 |
|
lemul1a |
⊢ ( ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
95 |
83 77 93 81 94
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
96 |
72 86 87 89 95
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
97 |
96
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
98 |
97
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
99 |
|
brralrspcev |
⊢ ( ( ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( 𝑑 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
100 |
59 98 99
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
101 |
100
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℝ ) → ( ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
102 |
101
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) ) |
103 |
51 102
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ↔ ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) ) |