| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ubth.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ubth.2 | ⊢ 𝑁  =  ( normCV ‘ 𝑊 ) | 
						
							| 3 |  | ubthlem.3 | ⊢ 𝐷  =  ( IndMet ‘ 𝑈 ) | 
						
							| 4 |  | ubthlem.4 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 |  | ubthlem.5 | ⊢ 𝑈  ∈  CBan | 
						
							| 6 |  | ubthlem.6 | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 7 |  | ubthlem.7 | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑢  =  𝑡  →  ( 𝑢 ‘ 𝑧 )  =  ( 𝑡 ‘ 𝑧 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑢  =  𝑡  →  ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑢  =  𝑡  →  ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑑 ) ) | 
						
							| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑑 ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑑  =  𝑐  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑑  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐 ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑑  =  𝑐  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐 ) ) | 
						
							| 14 | 11 13 | bitrid | ⊢ ( 𝑑  =  𝑐  →  ( ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐 ) ) | 
						
							| 15 | 14 | cbvrexvw | ⊢ ( ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐 ) | 
						
							| 16 |  | 2fveq3 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | breq1d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 18 | 17 | rexralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑐  ↔  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 19 | 15 18 | bitrid | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) | 
						
							| 21 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  𝑇  ⊆  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 ) | 
						
							| 23 | 22 20 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) | 
						
							| 24 |  | fveq1 | ⊢ ( 𝑢  =  𝑡  →  ( 𝑢 ‘ 𝑑 )  =  ( 𝑡 ‘ 𝑑 ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑢  =  𝑡  →  ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) ) ) | 
						
							| 26 | 25 | breq1d | ⊢ ( 𝑢  =  𝑡  →  ( ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) )  ≤  𝑚 ) ) | 
						
							| 27 | 26 | cbvralvw | ⊢ ( ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) )  ≤  𝑚 ) | 
						
							| 28 |  | 2fveq3 | ⊢ ( 𝑑  =  𝑧  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) )  =  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ) | 
						
							| 29 | 28 | breq1d | ⊢ ( 𝑑  =  𝑧  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) )  ≤  𝑚  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚 ) ) | 
						
							| 30 | 29 | ralbidv | ⊢ ( 𝑑  =  𝑧  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑑 ) )  ≤  𝑚  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚 ) ) | 
						
							| 31 | 27 30 | bitrid | ⊢ ( 𝑑  =  𝑧  →  ( ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚 ) ) | 
						
							| 32 | 31 | cbvrabv | ⊢ { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 }  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚 } | 
						
							| 33 |  | breq2 | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚  ↔  ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑚  =  𝑘  →  ( ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚  ↔  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 ) ) | 
						
							| 35 | 34 | rabbidv | ⊢ ( 𝑚  =  𝑘  →  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑚 }  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 36 | 32 35 | eqtrid | ⊢ ( 𝑚  =  𝑘  →  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 }  =  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 37 | 36 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } )  =  ( 𝑘  ∈  ℕ  ↦  { 𝑧  ∈  𝑋  ∣  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) )  ≤  𝑘 } ) | 
						
							| 38 | 1 2 3 4 5 6 21 23 37 | ubthlem1 | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  ∃ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) | 
						
							| 39 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  𝑇  ⊆  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 40 | 23 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) | 
						
							| 41 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 42 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 44 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) | 
						
							| 45 | 1 2 3 4 5 6 39 40 37 41 42 43 44 | ubthlem2 | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 ) ) )  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) | 
						
							| 46 | 45 | expr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  ∧  𝑟  ∈  ℝ+ )  →  ( { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 )  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) | 
						
							| 47 | 46 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  𝑋 ) )  →  ( ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 )  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) | 
						
							| 48 | 47 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  ( ∃ 𝑛  ∈  ℕ ∃ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ { 𝑧  ∈  𝑋  ∣  ( 𝑦 𝐷 𝑧 )  ≤  𝑟 }  ⊆  ( ( 𝑚  ∈  ℕ  ↦  { 𝑑  ∈  𝑋  ∣  ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑑 ) )  ≤  𝑚 } ) ‘ 𝑛 )  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) | 
						
							| 49 | 38 48 | mpd | ⊢ ( ( 𝜑  ∧  ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑 )  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑋 ∃ 𝑑  ∈  ℝ ∀ 𝑢  ∈  𝑇 ( 𝑁 ‘ ( 𝑢 ‘ 𝑧 ) )  ≤  𝑑  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) | 
						
							| 51 | 20 50 | biimtrrid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  →  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℝ )  →  𝑑  ∈  ℝ ) | 
						
							| 53 |  | bnnv | ⊢ ( 𝑈  ∈  CBan  →  𝑈  ∈  NrmCVec ) | 
						
							| 54 | 5 53 | ax-mp | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 55 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 56 | 1 55 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑥  ∈  𝑋 )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 57 | 54 56 | mpan | ⊢ ( 𝑥  ∈  𝑋  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 58 |  | remulcl | ⊢ ( ( 𝑑  ∈  ℝ  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 59 | 52 57 58 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 60 | 7 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 62 | 61 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  𝑡  ∈  ( 𝑈  BLnOp  𝑊 ) ) | 
						
							| 63 |  | eqid | ⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 64 |  | eqid | ⊢ ( 𝑈  BLnOp  𝑊 )  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 65 | 1 63 64 | blof | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑡  ∈  ( 𝑈  BLnOp  𝑊 ) )  →  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 66 | 54 6 65 | mp3an12 | ⊢ ( 𝑡  ∈  ( 𝑈  BLnOp  𝑊 )  →  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 67 | 62 66 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) | 
						
							| 68 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 69 | 67 68 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 70 | 63 2 | nvcl | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 ) )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 71 | 6 70 | mpan | ⊢ ( ( 𝑡 ‘ 𝑥 )  ∈  ( BaseSet ‘ 𝑊 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 72 | 69 71 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 73 |  | eqid | ⊢ ( 𝑈  normOpOLD  𝑊 )  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 74 | 1 63 73 | nmoxr | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ* ) | 
						
							| 75 | 54 6 74 | mp3an12 | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ* ) | 
						
							| 76 | 67 75 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ* ) | 
						
							| 77 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  𝑑  ∈  ℝ ) | 
						
							| 78 | 1 63 73 | nmogtmnf | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) )  →  -∞  <  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 ) ) | 
						
							| 79 | 54 6 78 | mp3an12 | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 )  →  -∞  <  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 ) ) | 
						
							| 80 | 67 79 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  -∞  <  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 ) ) | 
						
							| 81 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) | 
						
							| 82 |  | xrre | ⊢ ( ( ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ*  ∧  𝑑  ∈  ℝ )  ∧  ( -∞  <  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 83 | 76 77 80 81 82 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 84 | 57 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 85 |  | remulcl | ⊢ ( ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ  ∧  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 86 | 83 84 85 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 87 | 59 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 88 | 1 55 2 73 64 54 6 | nmblolbi | ⊢ ( ( 𝑡  ∈  ( 𝑈  BLnOp  𝑊 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 89 | 62 68 88 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 90 | 1 55 | nvge0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑥  ∈  𝑋 )  →  0  ≤  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) | 
						
							| 91 | 54 90 | mpan | ⊢ ( 𝑥  ∈  𝑋  →  0  ≤  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) | 
						
							| 92 | 57 91 | jca | ⊢ ( 𝑥  ∈  𝑋  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 93 | 92 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 94 |  | lemul1a | ⊢ ( ( ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) )  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 )  →  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 95 | 83 77 93 81 94 | syl31anc | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 96 | 72 86 87 89 95 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) )  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) | 
						
							| 97 | 96 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑  →  ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) | 
						
							| 98 | 97 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  →  ( ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑  →  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) | 
						
							| 99 |  | brralrspcev | ⊢ ( ( ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) )  ∈  ℝ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  ( 𝑑  ·  ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) )  →  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) | 
						
							| 100 | 59 98 99 | syl6an | ⊢ ( ( ( 𝜑  ∧  𝑑  ∈  ℝ )  ∧  𝑥  ∈  𝑋 )  →  ( ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑  →  ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 101 | 100 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑑  ∈  ℝ )  →  ( ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 102 | 101 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐 ) ) | 
						
							| 103 | 51 102 | impbid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑐  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) )  ≤  𝑐  ↔  ∃ 𝑑  ∈  ℝ ∀ 𝑡  ∈  𝑇 ( ( 𝑈  normOpOLD  𝑊 ) ‘ 𝑡 )  ≤  𝑑 ) ) |