Metamath Proof Explorer


Theorem uc1pcl

Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pcl.p 𝑃 = ( Poly1𝑅 )
uc1pcl.b 𝐵 = ( Base ‘ 𝑃 )
uc1pcl.c 𝐶 = ( Unic1p𝑅 )
Assertion uc1pcl ( 𝐹𝐶𝐹𝐵 )

Proof

Step Hyp Ref Expression
1 uc1pcl.p 𝑃 = ( Poly1𝑅 )
2 uc1pcl.b 𝐵 = ( Base ‘ 𝑃 )
3 uc1pcl.c 𝐶 = ( Unic1p𝑅 )
4 eqid ( 0g𝑃 ) = ( 0g𝑃 )
5 eqid ( deg1𝑅 ) = ( deg1𝑅 )
6 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
7 1 2 4 5 3 6 isuc1p ( 𝐹𝐶 ↔ ( 𝐹𝐵𝐹 ≠ ( 0g𝑃 ) ∧ ( ( coe1𝐹 ) ‘ ( ( deg1𝑅 ) ‘ 𝐹 ) ) ∈ ( Unit ‘ 𝑅 ) ) )
8 7 simp1bi ( 𝐹𝐶𝐹𝐵 )