Step |
Hyp |
Ref |
Expression |
1 |
|
ucncn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
2 |
|
ucncn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) |
3 |
|
ucncn.1 |
⊢ ( 𝜑 → 𝑅 ∈ UnifSp ) |
4 |
|
ucncn.2 |
⊢ ( 𝜑 → 𝑆 ∈ UnifSp ) |
5 |
|
ucncn.3 |
⊢ ( 𝜑 → 𝑅 ∈ TopSp ) |
6 |
|
ucncn.4 |
⊢ ( 𝜑 → 𝑆 ∈ TopSp ) |
7 |
|
ucncn.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( UnifSt ‘ 𝑅 ) = ( UnifSt ‘ 𝑅 ) |
10 |
8 9 1
|
isusp |
⊢ ( 𝑅 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) ) |
11 |
10
|
simplbi |
⊢ ( 𝑅 ∈ UnifSp → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
14 |
|
eqid |
⊢ ( UnifSt ‘ 𝑆 ) = ( UnifSt ‘ 𝑆 ) |
15 |
13 14 2
|
isusp |
⊢ ( 𝑆 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ∧ 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) ) |
16 |
15
|
simplbi |
⊢ ( 𝑆 ∈ UnifSp → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
18 |
|
isucn |
⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
19 |
12 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
20 |
7 19
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
22 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ dom 𝐹 |
23 |
21
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
25 |
22 24
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ) |
26 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝜑 ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) |
28 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ) |
29 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
30 |
28 29
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
31 |
20
|
simprd |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
32 |
31
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
33 |
|
r19.12 |
⊢ ( ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
35 |
34
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
36 |
26 27 30 35
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
38 |
26
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝜑 ) |
39 |
12
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
40 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) |
41 |
|
ustrel |
⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑟 ) |
42 |
39 40 41
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑟 ) |
43 |
42
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → Rel 𝑟 ) |
44 |
38 12
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
45 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) |
46 |
30
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
47 |
|
ustimasn |
⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) |
48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) |
49 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
50 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
51 |
|
simpllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) |
52 |
17
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
53 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) |
54 |
|
ustrel |
⊢ ( ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → Rel 𝑠 ) |
55 |
52 53 54
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑠 ) |
56 |
|
elrelimasn |
⊢ ( Rel 𝑠 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
58 |
57
|
biimpar |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
59 |
51 58
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) |
60 |
59
|
adantlr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) |
61 |
|
ffn |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
62 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
63 |
21 61 62
|
3syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
64 |
63
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
65 |
50 60 64
|
mpbir2and |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
66 |
65
|
ex |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
69 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ↔ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
70 |
|
pm3.33 |
⊢ ( ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
71 |
70
|
ralimi |
⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
72 |
69 71
|
sylbir |
⊢ ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
73 |
49 68 72
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
74 |
|
simpl2l |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → Rel 𝑟 ) |
75 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) |
76 |
|
elrelimasn |
⊢ ( Rel 𝑟 → ( 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ↔ 𝑥 𝑟 𝑦 ) ) |
77 |
76
|
biimpa |
⊢ ( ( Rel 𝑟 ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑥 𝑟 𝑦 ) |
78 |
74 75 77
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑥 𝑟 𝑦 ) |
79 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑟 𝑦 ) ) |
80 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
81 |
79 80
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ↔ ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
82 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
83 |
|
simpl2r |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) |
84 |
83 75
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
85 |
81 82 84
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
86 |
78 85
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
87 |
86
|
ex |
⊢ ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
88 |
87
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
89 |
38 43 48 73 88
|
syl121anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
90 |
89
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
91 |
90
|
reximdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ( ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
92 |
37 91
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
93 |
|
sneq |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → { 𝑦 } = { ( 𝐹 ‘ 𝑥 ) } ) |
94 |
93
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 “ { 𝑦 } ) = ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
95 |
94
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ↔ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ) |
96 |
95
|
rexbidv |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ↔ ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ) |
97 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ 𝐾 ) |
98 |
15
|
simprbi |
⊢ ( 𝑆 ∈ UnifSp → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
99 |
4 98
|
syl |
⊢ ( 𝜑 → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
101 |
97 100
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
102 |
|
elutop |
⊢ ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) |
103 |
17 102
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) |
105 |
101 104
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) |
106 |
105
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) |
108 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) |
109 |
21 61 108
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) |
111 |
110
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) |
112 |
111
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) |
113 |
96 107 112
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) |
114 |
92 113
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
115 |
114
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
116 |
10
|
simprbi |
⊢ ( 𝑅 ∈ UnifSp → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
117 |
3 116
|
syl |
⊢ ( 𝜑 → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
119 |
118
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) ) |
120 |
|
elutop |
⊢ ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
121 |
12 120
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
123 |
119 122
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
124 |
25 115 123
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
125 |
124
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
126 |
8 1
|
istps |
⊢ ( 𝑅 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
127 |
5 126
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
128 |
13 2
|
istps |
⊢ ( 𝑆 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
129 |
6 128
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
130 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) ) ) |
131 |
127 129 130
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) ) ) |
132 |
21 125 131
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |