Step |
Hyp |
Ref |
Expression |
1 |
|
ucnextcn.x |
⊢ 𝑋 = ( Base ‘ 𝑉 ) |
2 |
|
ucnextcn.y |
⊢ 𝑌 = ( Base ‘ 𝑊 ) |
3 |
|
ucnextcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑉 ) |
4 |
|
ucnextcn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑊 ) |
5 |
|
ucnextcn.s |
⊢ 𝑆 = ( UnifSt ‘ 𝑉 ) |
6 |
|
ucnextcn.t |
⊢ 𝑇 = ( UnifSt ‘ ( 𝑉 ↾s 𝐴 ) ) |
7 |
|
ucnextcn.u |
⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) |
8 |
|
ucnextcn.v |
⊢ ( 𝜑 → 𝑉 ∈ TopSp ) |
9 |
|
ucnextcn.r |
⊢ ( 𝜑 → 𝑉 ∈ UnifSp ) |
10 |
|
ucnextcn.w |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
11 |
|
ucnextcn.z |
⊢ ( 𝜑 → 𝑊 ∈ CUnifSp ) |
12 |
|
ucnextcn.h |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
13 |
|
ucnextcn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
14 |
|
ucnextcn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑇 Cnu 𝑈 ) ) |
15 |
|
ucnextcn.c |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
16 |
1 6
|
ressust |
⊢ ( ( 𝑉 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ) |
17 |
9 13 16
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ) |
18 |
|
cuspusp |
⊢ ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp ) |
19 |
11 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ UnifSp ) |
20 |
2 7 4
|
isusp |
⊢ ( 𝑊 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ∧ 𝐾 = ( unifTop ‘ 𝑈 ) ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → ( 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ∧ 𝐾 = ( unifTop ‘ 𝑈 ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ) |
23 |
|
isucn |
⊢ ( ( 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ∧ 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑇 Cnu 𝑈 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑣 𝑧 → ( 𝐹 ‘ 𝑦 ) 𝑤 ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
24 |
17 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑇 Cnu 𝑈 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑣 𝑧 → ( 𝐹 ‘ 𝑦 ) 𝑤 ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
25 |
14 24
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑈 ∃ 𝑣 ∈ 𝑇 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑣 𝑧 → ( 𝐹 ‘ 𝑦 ) 𝑤 ( 𝐹 ‘ 𝑧 ) ) ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑌 ) |
27 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ) |
28 |
27
|
elfvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ V ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
30 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
31 |
29 30
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
32 |
1 3
|
istps |
⊢ ( 𝑉 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
33 |
8 32
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
35 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
36 |
|
trnei |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
37 |
34 35 29 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
38 |
31 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
39 |
|
filfbas |
⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
41 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝐴 ⟶ 𝑌 ) |
42 |
|
fmval |
⊢ ( ( 𝑌 ∈ V ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝑌 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝑌 filGen ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ) ) |
43 |
28 40 41 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝑌 filGen ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ) ) |
44 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ) |
45 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ( 𝑇 Cnu 𝑈 ) ) |
46 |
1 5 3
|
isusp |
⊢ ( 𝑉 ∈ UnifSp ↔ ( 𝑆 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐽 = ( unifTop ‘ 𝑆 ) ) ) |
47 |
9 46
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐽 = ( unifTop ‘ 𝑆 ) ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → 𝑆 ∈ ( UnifOn ‘ 𝑋 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ ( UnifOn ‘ 𝑋 ) ) |
50 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑉 ∈ UnifSp ) |
51 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑉 ∈ TopSp ) |
52 |
1 3 5
|
neipcfilu |
⊢ ( ( 𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( CauFilu ‘ 𝑆 ) ) |
53 |
50 51 29 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( CauFilu ‘ 𝑆 ) ) |
54 |
|
0nelfb |
⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) → ¬ ∅ ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) |
55 |
40 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ ∅ ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) |
56 |
|
trcfilu |
⊢ ( ( 𝑆 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ ( CauFilu ‘ 𝑆 ) ∧ ¬ ∅ ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
57 |
49 53 55 35 56
|
syl121anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( CauFilu ‘ ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
58 |
44
|
elfvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ V ) |
59 |
|
ressuss |
⊢ ( 𝐴 ∈ V → ( UnifSt ‘ ( 𝑉 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑉 ) ↾t ( 𝐴 × 𝐴 ) ) ) |
60 |
5
|
oveq1i |
⊢ ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) = ( ( UnifSt ‘ 𝑉 ) ↾t ( 𝐴 × 𝐴 ) ) |
61 |
59 6 60
|
3eqtr4g |
⊢ ( 𝐴 ∈ V → 𝑇 = ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝐴 ∈ V → ( CauFilu ‘ 𝑇 ) = ( CauFilu ‘ ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
63 |
58 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( CauFilu ‘ 𝑇 ) = ( CauFilu ‘ ( 𝑆 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
64 |
57 63
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( CauFilu ‘ 𝑇 ) ) |
65 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑏 ) ) |
66 |
65
|
cbvmptv |
⊢ ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) = ( 𝑏 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑏 ) ) |
67 |
66
|
rneqi |
⊢ ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) = ran ( 𝑏 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑏 ) ) |
68 |
44 27 45 64 67
|
fmucnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
69 |
|
cfilufg |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑌 ) ∧ ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑌 filGen ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
70 |
27 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑌 filGen ran ( 𝑎 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↦ ( 𝐹 “ 𝑎 ) ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
71 |
43 70
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
72 |
1 2 3 4 7 8 10 11 12 13 26 15 71
|
cnextucn |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |