Step |
Hyp |
Ref |
Expression |
1 |
|
ucnprima.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
|
ucnprima.2 |
⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
3 |
|
ucnprima.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) |
4 |
|
ucnprima.4 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
5 |
|
ucnprima.5 |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
6 |
|
breq |
⊢ ( 𝑤 = 𝑊 → ( ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
8
|
rexralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
10 |
|
isucn |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
12 |
3 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) |
13 |
12
|
simprd |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
9 13 4
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝜑 ) |
16 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
|
ustssxp |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) |
18 |
1 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) |
19 |
18
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
20 |
19
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
21 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ 𝑟 ) |
22 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
24 |
|
elxp2 |
⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
27 |
26
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) ) |
28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) ) |
29 |
|
df-br |
⊢ ( 𝑥 𝑟 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) |
30 |
28 29
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 𝑥 𝑟 𝑦 ) ) |
31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
32 |
|
opex |
⊢ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ∈ V |
33 |
1 2 3 4 5
|
ucnimalem |
⊢ 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
34 |
33
|
fvmpt2 |
⊢ ( ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ∧ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ∈ V ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
35 |
31 32 34
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
37 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
38 |
31 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
39 |
36 38
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 〈 𝑥 , 𝑦 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
40 |
|
vex |
⊢ 𝑥 ∈ V |
41 |
|
vex |
⊢ 𝑦 ∈ V |
42 |
40 41
|
opth |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ↔ ( 𝑥 = ( 1st ‘ 𝑝 ) ∧ 𝑦 = ( 2nd ‘ 𝑝 ) ) ) |
43 |
39 42
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑥 = ( 1st ‘ 𝑝 ) ∧ 𝑦 = ( 2nd ‘ 𝑝 ) ) ) |
44 |
43
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 = ( 1st ‘ 𝑝 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) ) |
46 |
43
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 = ( 2nd ‘ 𝑝 ) ) |
47 |
46
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) ) |
48 |
45 47
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
49 |
35 48
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
50 |
49
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ 𝑊 ) ) |
51 |
|
df-br |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ 𝑊 ) |
52 |
50 51
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ↔ ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
53 |
30 52
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
54 |
53
|
exbiri |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
55 |
54
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
56 |
55
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
57 |
25 56
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) |
59 |
22 58
|
r19.29d2r |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
60 |
|
pm3.35 |
⊢ ( ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
61 |
60
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
62 |
61
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
63 |
59 62
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
64 |
63
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 ∈ 𝑟 ) → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
65 |
15 16 20 21 64
|
syl1111anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
66 |
65
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
67 |
66
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
68 |
67
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
69 |
14 68
|
mpd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
70 |
5
|
mpofun |
⊢ Fun 𝐺 |
71 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ V |
72 |
5 71
|
dmmpo |
⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) |
73 |
18 72
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ dom 𝐺 ) |
74 |
|
funimass4 |
⊢ ( ( Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
75 |
70 73 74
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
76 |
75
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) |
77 |
76
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) |
78 |
|
r19.29r |
⊢ ( ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ∀ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) ) |
79 |
69 77 78
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) ) |
80 |
|
pm3.35 |
⊢ ( ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |
81 |
80
|
reximi |
⊢ ( ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |
82 |
79 81
|
syl |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |