Step |
Hyp |
Ref |
Expression |
1 |
|
ucnprima.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
|
ucnprima.2 |
⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
3 |
|
ucnprima.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) |
4 |
|
ucnprima.4 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
5 |
|
ucnprima.5 |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
6 7
|
op1std |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑝 ) = 𝑥 ) |
9 |
8
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
6 7
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑝 ) = 𝑦 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
12 |
9 11
|
opeq12d |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
13 |
12
|
mpompt |
⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
14 |
5 13
|
eqtr4i |
⊢ 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |