Metamath Proof Explorer


Theorem ufdcringd

Description: A unique factorization domain is a commutative ring. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypothesis ufdcringd.1 ( 𝜑𝑅 ∈ UFD )
Assertion ufdcringd ( 𝜑𝑅 ∈ CRing )

Proof

Step Hyp Ref Expression
1 ufdcringd.1 ( 𝜑𝑅 ∈ UFD )
2 eqid ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 )
3 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
4 eqid ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 2 3 4 5 isufd ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) )
7 1 6 sylib ( 𝜑 → ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) )
8 7 simpld ( 𝜑𝑅 ∈ CRing )