Step |
Hyp |
Ref |
Expression |
1 |
|
ufdcringd.1 |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |
2 |
|
eqid |
⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
2 3 4 5
|
isufd |
⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) ) |
7 |
1 6
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ CRing ∧ ( ( AbsVal ‘ 𝑅 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |