Metamath Proof Explorer


Theorem uffinfix

Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffinfix ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } )

Proof

Step Hyp Ref Expression
1 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
2 filfinnfr ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → 𝐹 ≠ ∅ )
3 1 2 syl3an1 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → 𝐹 ≠ ∅ )
4 uffix2 ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ ↔ ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )
5 4 3ad2ant1 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → ( 𝐹 ≠ ∅ ↔ ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )
6 3 5 mpbid ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝐹𝑆 ∈ Fin ) → ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } )