Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) |
2 |
|
snnzg |
⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ≠ ∅ ) |
3 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) |
4 |
|
snfbas |
⊢ ( ( { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ∧ 𝑋 ∈ 𝑉 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
5 |
1 2 3 4
|
syl2an23an |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
6 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) |
7 |
6
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
8 |
|
snex |
⊢ { 𝐴 } ∈ V |
9 |
8
|
snid |
⊢ { 𝐴 } ∈ { { 𝐴 } } |
10 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑦 → { 𝐴 } ⊆ 𝑦 ) |
11 |
|
sseq1 |
⊢ ( 𝑥 = { 𝐴 } → ( 𝑥 ⊆ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) ) |
12 |
11
|
rspcev |
⊢ ( ( { 𝐴 } ∈ { { 𝐴 } } ∧ { 𝐴 } ⊆ 𝑦 ) → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) |
13 |
9 10 12
|
sylancr |
⊢ ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) |
14 |
|
intss1 |
⊢ ( 𝑥 ∈ { { 𝐴 } } → ∩ { { 𝐴 } } ⊆ 𝑥 ) |
15 |
|
sstr2 |
⊢ ( ∩ { { 𝐴 } } ⊆ 𝑥 → ( 𝑥 ⊆ 𝑦 → ∩ { { 𝐴 } } ⊆ 𝑦 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑥 ∈ { { 𝐴 } } → ( 𝑥 ⊆ 𝑦 → ∩ { { 𝐴 } } ⊆ 𝑦 ) ) |
17 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 } ) |
18 |
17
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝐴 } ) |
19 |
8
|
intsn |
⊢ ∩ { { 𝐴 } } = { 𝐴 } |
20 |
18 19
|
eleqtrrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∩ { { 𝐴 } } ) |
21 |
|
ssel |
⊢ ( ∩ { { 𝐴 } } ⊆ 𝑦 → ( 𝐴 ∈ ∩ { { 𝐴 } } → 𝐴 ∈ 𝑦 ) ) |
22 |
20 21
|
syl5com |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ∩ { { 𝐴 } } ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
23 |
16 22
|
sylan9r |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ { { 𝐴 } } ) → ( 𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
24 |
23
|
rexlimdva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
25 |
13 24
|
impbid2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑦 ↔ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) |
26 |
7 25
|
anbi12d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) |
27 |
|
eleq2w |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
28 |
27
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) |
29 |
28
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) |
30 |
|
elfg |
⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) |
31 |
5 30
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) |
32 |
26 29 31
|
3bitr4d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ) ) |
33 |
32
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
34 |
5 33
|
jca |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |