Step |
Hyp |
Ref |
Expression |
1 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
2 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
3 |
|
intssuni |
⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
4 |
1 2 3
|
3syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
5 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
6 |
1 5
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
7 |
4 6
|
sseqtrd |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
8 |
7
|
sseld |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 → 𝑥 ∈ 𝑋 ) ) |
9 |
8
|
pm4.71rd |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹 ) ) ) |
10 |
|
uffixfr |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
12 |
9 11
|
bitrd |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
13 |
12
|
exbidv |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
14 |
|
n0 |
⊢ ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑋 ∧ 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) |
16 |
13 14 15
|
3bitr4g |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦 } ) ) |