Metamath Proof Explorer


Theorem uffix2

Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffix2 ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ ↔ ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )

Proof

Step Hyp Ref Expression
1 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
2 filn0 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ )
3 intssuni ( 𝐹 ≠ ∅ → 𝐹 𝐹 )
4 1 2 3 3syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 𝐹 )
5 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
6 1 5 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 = 𝑋 )
7 4 6 sseqtrd ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹𝑋 )
8 7 sseld ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 𝐹𝑥𝑋 ) )
9 8 pm4.71rd ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 𝐹 ↔ ( 𝑥𝑋𝑥 𝐹 ) ) )
10 uffixfr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 𝐹𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )
11 10 anbi2d ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥𝑋𝑥 𝐹 ) ↔ ( 𝑥𝑋𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) ) )
12 9 11 bitrd ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 𝐹 ↔ ( 𝑥𝑋𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) ) )
13 12 exbidv ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 𝐹 ↔ ∃ 𝑥 ( 𝑥𝑋𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) ) )
14 n0 ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 𝐹 )
15 df-rex ( ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ↔ ∃ 𝑥 ( 𝑥𝑋𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )
16 13 14 15 3bitr4g ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ ↔ ∃ 𝑥𝑋 𝐹 = { 𝑦 ∈ 𝒫 𝑋𝑥𝑦 } ) )