Metamath Proof Explorer


Theorem uffixfr

Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element A ), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixfr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 𝐹𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) )
2 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
3 filtop ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐹 )
4 2 3 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋𝐹 )
5 filn0 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ )
6 intssuni ( 𝐹 ≠ ∅ → 𝐹 𝐹 )
7 2 5 6 3syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 𝐹 )
8 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
9 2 8 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 = 𝑋 )
10 7 9 sseqtrd ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹𝑋 )
11 10 sselda ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐴𝑋 )
12 uffix ( ( 𝑋𝐹𝐴𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) )
13 4 11 12 syl2an2r ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) )
14 13 simprd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) )
15 13 simpld ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) )
16 fgcl ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) )
17 15 16 syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) )
18 14 17 eqeltrd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( Fil ‘ 𝑋 ) )
19 2 adantr ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
20 filsspw ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 )
21 19 20 syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 )
22 elintg ( 𝐴 𝐹 → ( 𝐴 𝐹 ↔ ∀ 𝑥𝐹 𝐴𝑥 ) )
23 22 ibi ( 𝐴 𝐹 → ∀ 𝑥𝐹 𝐴𝑥 )
24 23 adantl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → ∀ 𝑥𝐹 𝐴𝑥 )
25 ssrab ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ∀ 𝑥𝐹 𝐴𝑥 ) )
26 21 24 25 sylanbrc ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
27 ufilmax ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
28 1 18 26 27 syl3anc ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
29 eqimss ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
30 29 adantl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
31 25 simprbi ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } → ∀ 𝑥𝐹 𝐴𝑥 )
32 30 31 syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → ∀ 𝑥𝐹 𝐴𝑥 )
33 eleq2 ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } → ( 𝑋𝐹𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) )
34 33 biimpac ( ( 𝑋𝐹𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
35 4 34 sylan ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
36 eleq2 ( 𝑥 = 𝑋 → ( 𝐴𝑥𝐴𝑋 ) )
37 36 elrab ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ↔ ( 𝑋 ∈ 𝒫 𝑋𝐴𝑋 ) )
38 37 simprbi ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } → 𝐴𝑋 )
39 elintg ( 𝐴𝑋 → ( 𝐴 𝐹 ↔ ∀ 𝑥𝐹 𝐴𝑥 ) )
40 35 38 39 3syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → ( 𝐴 𝐹 ↔ ∀ 𝑥𝐹 𝐴𝑥 ) )
41 32 40 mpbird ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) → 𝐴 𝐹 )
42 28 41 impbida ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 𝐹𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) )