| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) |
| 2 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 3 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 5 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 6 |
|
intssuni |
⊢ ( 𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 7 |
2 5 6
|
3syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ ∪ 𝐹 ) |
| 8 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 9 |
2 8
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 10 |
7 9
|
sseqtrd |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ⊆ 𝑋 ) |
| 11 |
10
|
sselda |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 12 |
|
uffix |
⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |
| 13 |
4 11 12
|
syl2an2r |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |
| 14 |
13
|
simprd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
| 15 |
13
|
simpld |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
| 16 |
|
fgcl |
⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 18 |
14 17
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 19 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 20 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 22 |
|
elintg |
⊢ ( 𝐴 ∈ ∩ 𝐹 → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) |
| 23 |
22
|
ibi |
⊢ ( 𝐴 ∈ ∩ 𝐹 → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 25 |
|
ssrab |
⊢ ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) |
| 26 |
21 24 25
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 27 |
|
ufilmax |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 28 |
1 18 26 27
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ∈ ∩ 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 29 |
|
eqimss |
⊢ ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 31 |
25
|
simprbi |
⊢ ( 𝐹 ⊆ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) |
| 33 |
|
eleq2 |
⊢ ( 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → ( 𝑋 ∈ 𝐹 ↔ 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |
| 34 |
33
|
biimpac |
⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 35 |
4 34
|
sylan |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) |
| 36 |
|
eleq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑋 ) ) |
| 37 |
36
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑋 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 38 |
37
|
simprbi |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } → 𝐴 ∈ 𝑋 ) |
| 39 |
|
elintg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) |
| 40 |
35 38 39
|
3syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → ( 𝐴 ∈ ∩ 𝐹 ↔ ∀ 𝑥 ∈ 𝐹 𝐴 ∈ 𝑥 ) ) |
| 41 |
32 40
|
mpbird |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) → 𝐴 ∈ ∩ 𝐹 ) |
| 42 |
28 41
|
impbida |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |