Metamath Proof Explorer


Theorem uffixsn

Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixsn ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝐴 } ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝑥 = { 𝐴 } → ( 𝐴𝑥𝐴 ∈ { 𝐴 } ) )
2 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
3 filn0 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ )
4 intssuni ( 𝐹 ≠ ∅ → 𝐹 𝐹 )
5 2 3 4 3syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 𝐹 )
6 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
7 2 6 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 = 𝑋 )
8 5 7 sseqtrd ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹𝑋 )
9 8 sselda ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐴𝑋 )
10 9 snssd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝐴 } ⊆ 𝑋 )
11 snex { 𝐴 } ∈ V
12 11 elpw ( { 𝐴 } ∈ 𝒫 𝑋 ↔ { 𝐴 } ⊆ 𝑋 )
13 10 12 sylibr ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝐴 } ∈ 𝒫 𝑋 )
14 snidg ( 𝐴 𝐹𝐴 ∈ { 𝐴 } )
15 14 adantl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐴 ∈ { 𝐴 } )
16 1 13 15 elrabd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝐴 } ∈ { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
17 uffixfr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐴 𝐹𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } ) )
18 17 biimpa ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → 𝐹 = { 𝑥 ∈ 𝒫 𝑋𝐴𝑥 } )
19 16 18 eleqtrrd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 𝐹 ) → { 𝐴 } ∈ 𝐹 )