| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ufilss | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) | 
						
							| 2 | 1 | ord | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ¬  𝑆  ∈  𝐹  →  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) | 
						
							| 3 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 4 |  | filfbas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 5 |  | fbncp | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  𝑆  ∈  𝐹 )  →  ¬  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑆  ∈  𝐹  →  ¬  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) | 
						
							| 7 | 6 | con2d | ⊢ ( 𝐹  ∈  ( fBas ‘ 𝑋 )  →  ( ( 𝑋  ∖  𝑆 )  ∈  𝐹  →  ¬  𝑆  ∈  𝐹 ) ) | 
						
							| 8 | 3 4 7 | 3syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( ( 𝑋  ∖  𝑆 )  ∈  𝐹  →  ¬  𝑆  ∈  𝐹 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑋  ∖  𝑆 )  ∈  𝐹  →  ¬  𝑆  ∈  𝐹 ) ) | 
						
							| 10 | 2 9 | impbid | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( ¬  𝑆  ∈  𝐹  ↔  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) |