Metamath Proof Explorer


Theorem ufilb

Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilb ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ¬ 𝑆𝐹 ↔ ( 𝑋𝑆 ) ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 ufilss ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) )
2 1 ord ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ¬ 𝑆𝐹 → ( 𝑋𝑆 ) ∈ 𝐹 ) )
3 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
4 filfbas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
5 fbncp ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑆𝐹 ) → ¬ ( 𝑋𝑆 ) ∈ 𝐹 )
6 5 ex ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑆𝐹 → ¬ ( 𝑋𝑆 ) ∈ 𝐹 ) )
7 6 con2d ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑋𝑆 ) ∈ 𝐹 → ¬ 𝑆𝐹 ) )
8 3 4 7 3syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋𝑆 ) ∈ 𝐹 → ¬ 𝑆𝐹 ) )
9 8 adantr ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ( 𝑋𝑆 ) ∈ 𝐹 → ¬ 𝑆𝐹 ) )
10 2 9 impbid ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ¬ 𝑆𝐹 ↔ ( 𝑋𝑆 ) ∈ 𝐹 ) )