Metamath Proof Explorer


Theorem ufildom1

Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion ufildom1 ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ≼ 1o )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐹 = ∅ → ( 𝐹 ≼ 1o ↔ ∅ ≼ 1o ) )
2 uffixsn ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 𝐹 ) → { 𝑥 } ∈ 𝐹 )
3 intss1 ( { 𝑥 } ∈ 𝐹 𝐹 ⊆ { 𝑥 } )
4 2 3 syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 𝐹 ) → 𝐹 ⊆ { 𝑥 } )
5 simpr ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 𝐹 ) → 𝑥 𝐹 )
6 5 snssd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 𝐹 ) → { 𝑥 } ⊆ 𝐹 )
7 4 6 eqssd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 𝐹 ) → 𝐹 = { 𝑥 } )
8 7 ex ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 𝐹 𝐹 = { 𝑥 } ) )
9 8 eximdv ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 𝐹 → ∃ 𝑥 𝐹 = { 𝑥 } ) )
10 n0 ( 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 𝐹 )
11 en1 ( 𝐹 ≈ 1o ↔ ∃ 𝑥 𝐹 = { 𝑥 } )
12 9 10 11 3imtr4g ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ≠ ∅ → 𝐹 ≈ 1o ) )
13 12 imp ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝐹 ≈ 1o )
14 endom ( 𝐹 ≈ 1o 𝐹 ≼ 1o )
15 13 14 syl ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝐹 ≼ 1o )
16 1on 1o ∈ On
17 0domg ( 1o ∈ On → ∅ ≼ 1o )
18 16 17 mp1i ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∅ ≼ 1o )
19 1 15 18 pm2.61ne ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ≼ 1o )