Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( ∩ 𝐹 = ∅ → ( ∩ 𝐹 ≼ 1o ↔ ∅ ≼ 1o ) ) |
2 |
|
uffixsn |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → { 𝑥 } ∈ 𝐹 ) |
3 |
|
intss1 |
⊢ ( { 𝑥 } ∈ 𝐹 → ∩ 𝐹 ⊆ { 𝑥 } ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → ∩ 𝐹 ⊆ { 𝑥 } ) |
5 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → 𝑥 ∈ ∩ 𝐹 ) |
6 |
5
|
snssd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → { 𝑥 } ⊆ ∩ 𝐹 ) |
7 |
4 6
|
eqssd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ∩ 𝐹 ) → ∩ 𝐹 = { 𝑥 } ) |
8 |
7
|
ex |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ 𝐹 → ∩ 𝐹 = { 𝑥 } ) ) |
9 |
8
|
eximdv |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∃ 𝑥 𝑥 ∈ ∩ 𝐹 → ∃ 𝑥 ∩ 𝐹 = { 𝑥 } ) ) |
10 |
|
n0 |
⊢ ( ∩ 𝐹 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ∩ 𝐹 ) |
11 |
|
en1 |
⊢ ( ∩ 𝐹 ≈ 1o ↔ ∃ 𝑥 ∩ 𝐹 = { 𝑥 } ) |
12 |
9 10 11
|
3imtr4g |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 ≠ ∅ → ∩ 𝐹 ≈ 1o ) ) |
13 |
12
|
imp |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≈ 1o ) |
14 |
|
endom |
⊢ ( ∩ 𝐹 ≈ 1o → ∩ 𝐹 ≼ 1o ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≼ 1o ) |
16 |
|
1on |
⊢ 1o ∈ On |
17 |
|
0domg |
⊢ ( 1o ∈ On → ∅ ≼ 1o ) |
18 |
16 17
|
mp1i |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∅ ≼ 1o ) |
19 |
1 15 18
|
pm2.61ne |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∩ 𝐹 ≼ 1o ) |