Step |
Hyp |
Ref |
Expression |
1 |
|
ufildr.1 |
⊢ 𝐽 = ( 𝐹 ∪ { ∅ } ) |
2 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) |
3 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
4 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
5 |
3 4
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
6 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( 𝐹 ∪ { ∅ } ) |
7 |
|
uniun |
⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∪ { ∅ } ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
8
|
unisn |
⊢ ∪ { ∅ } = ∅ |
10 |
9
|
uneq2i |
⊢ ( ∪ 𝐹 ∪ ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∅ ) |
11 |
|
un0 |
⊢ ( ∪ 𝐹 ∪ ∅ ) = ∪ 𝐹 |
12 |
7 10 11
|
3eqtri |
⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ∪ 𝐹 |
13 |
6 12
|
eqtr2i |
⊢ ∪ 𝐹 = ∪ 𝐽 |
14 |
5 13
|
eqtr3di |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
15 |
14
|
sseq2d |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 ↔ 𝑥 ⊆ ∪ 𝐽 ) ) |
16 |
2 15
|
syl5ibr |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋 ) ) |
17 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
18 |
17
|
cldss |
⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ∪ 𝐽 ) |
19 |
18 15
|
syl5ibr |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ 𝑋 ) ) |
20 |
16 19
|
jaod |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ 𝑋 ) ) |
21 |
|
ufilss |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
22 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ { ∅ } ) |
23 |
22 1
|
sseqtrri |
⊢ 𝐹 ⊆ 𝐽 |
24 |
23
|
a1i |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ 𝐽 ) |
25 |
24
|
sseld |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ 𝐽 ) ) |
26 |
24
|
sseld |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
27 |
|
filconn |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |
28 |
|
conntop |
⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ Conn → ( 𝐹 ∪ { ∅ } ) ∈ Top ) |
29 |
3 27 28
|
3syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top ) |
30 |
1 29
|
eqeltrid |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐽 ∈ Top ) |
31 |
15
|
biimpa |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ ∪ 𝐽 ) |
32 |
17
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
33 |
30 31 32
|
syl2an2r |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
34 |
14
|
difeq1d |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) = ( ∪ 𝐽 ∖ 𝑥 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
37 |
33 36
|
bitr4d |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
38 |
26 37
|
sylibrd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
39 |
25 38
|
orim12d |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
40 |
21 39
|
mpd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
41 |
40
|
ex |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
42 |
20 41
|
impbid |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥 ⊆ 𝑋 ) ) |
43 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
44 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋 ) |
45 |
42 43 44
|
3bitr4g |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥 ∈ 𝒫 𝑋 ) ) |
46 |
45
|
eqrdv |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) = 𝒫 𝑋 ) |