Metamath Proof Explorer


Theorem ufildr

Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)

Ref Expression
Hypothesis ufildr.1 𝐽 = ( 𝐹 ∪ { ∅ } )
Assertion ufildr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) = 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 ufildr.1 𝐽 = ( 𝐹 ∪ { ∅ } )
2 elssuni ( 𝑥𝐽𝑥 𝐽 )
3 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
4 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
5 3 4 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 = 𝑋 )
6 1 unieqi 𝐽 = ( 𝐹 ∪ { ∅ } )
7 uniun ( 𝐹 ∪ { ∅ } ) = ( 𝐹 { ∅ } )
8 0ex ∅ ∈ V
9 8 unisn { ∅ } = ∅
10 9 uneq2i ( 𝐹 { ∅ } ) = ( 𝐹 ∪ ∅ )
11 un0 ( 𝐹 ∪ ∅ ) = 𝐹
12 7 10 11 3eqtri ( 𝐹 ∪ { ∅ } ) = 𝐹
13 6 12 eqtr2i 𝐹 = 𝐽
14 5 13 eqtr3di ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 = 𝐽 )
15 14 sseq2d ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥𝑋𝑥 𝐽 ) )
16 2 15 syl5ibr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥𝐽𝑥𝑋 ) )
17 eqid 𝐽 = 𝐽
18 17 cldss ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 𝐽 )
19 18 15 syl5ibr ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥𝑋 ) )
20 16 19 jaod ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝑋 ) )
21 ufilss ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) )
22 ssun1 𝐹 ⊆ ( 𝐹 ∪ { ∅ } )
23 22 1 sseqtrri 𝐹𝐽
24 23 a1i ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → 𝐹𝐽 )
25 24 sseld ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑥𝐹𝑥𝐽 ) )
26 24 sseld ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐹 → ( 𝑋𝑥 ) ∈ 𝐽 ) )
27 filconn ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn )
28 conntop ( ( 𝐹 ∪ { ∅ } ) ∈ Conn → ( 𝐹 ∪ { ∅ } ) ∈ Top )
29 3 27 28 3syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top )
30 1 29 eqeltrid ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐽 ∈ Top )
31 15 biimpa ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → 𝑥 𝐽 )
32 17 iscld2 ( ( 𝐽 ∈ Top ∧ 𝑥 𝐽 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐽𝑥 ) ∈ 𝐽 ) )
33 30 31 32 syl2an2r ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐽𝑥 ) ∈ 𝐽 ) )
34 14 difeq1d ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑋𝑥 ) = ( 𝐽𝑥 ) )
35 34 eleq1d ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐽 ↔ ( 𝐽𝑥 ) ∈ 𝐽 ) )
36 35 adantr ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐽 ↔ ( 𝐽𝑥 ) ∈ 𝐽 ) )
37 33 36 bitr4d ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋𝑥 ) ∈ 𝐽 ) )
38 26 37 sylibrd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐹𝑥 ∈ ( Clsd ‘ 𝐽 ) ) )
39 25 38 orim12d ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) → ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) )
40 21 39 mpd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) )
41 40 ex ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥𝑋 → ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) )
42 20 41 impbid ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥𝑋 ) )
43 elun ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥𝐽𝑥 ∈ ( Clsd ‘ 𝐽 ) ) )
44 velpw ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
45 42 43 44 3bitr4g ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥 ∈ 𝒫 𝑋 ) )
46 45 eqrdv ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) = 𝒫 𝑋 )