Metamath Proof Explorer


Theorem ufilen

Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)

Ref Expression
Assertion ufilen ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥𝑓 𝑥𝑋 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex2i ( ω ≼ 𝑋𝑋 ∈ V )
3 numth3 ( 𝑋 ∈ V → 𝑋 ∈ dom card )
4 2 3 syl ( ω ≼ 𝑋𝑋 ∈ dom card )
5 csdfil ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) )
6 4 5 mpancom ( ω ≼ 𝑋 → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) )
7 filssufil ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 )
8 6 7 syl ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 )
9 elfvex ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ V )
10 9 ad2antlr ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → 𝑋 ∈ V )
11 ufilfil ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) )
12 filelss ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝑓 ) → 𝑥𝑋 )
13 11 12 sylan ( ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑓 ) → 𝑥𝑋 )
14 13 adantll ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → 𝑥𝑋 )
15 ssdomg ( 𝑋 ∈ V → ( 𝑥𝑋𝑥𝑋 ) )
16 10 14 15 sylc ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → 𝑥𝑋 )
17 filfbas ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) )
18 11 17 syl ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) )
19 18 adantl ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) )
20 fbncp ( ( 𝑓 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥𝑓 ) → ¬ ( 𝑋𝑥 ) ∈ 𝑓 )
21 19 20 sylan ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → ¬ ( 𝑋𝑥 ) ∈ 𝑓 )
22 difeq2 ( 𝑦 = ( 𝑋𝑥 ) → ( 𝑋𝑦 ) = ( 𝑋 ∖ ( 𝑋𝑥 ) ) )
23 22 breq1d ( 𝑦 = ( 𝑋𝑥 ) → ( ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋𝑥 ) ) ≺ 𝑋 ) )
24 difss ( 𝑋𝑥 ) ⊆ 𝑋
25 elpw2g ( 𝑋 ∈ V → ( ( 𝑋𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋𝑥 ) ⊆ 𝑋 ) )
26 24 25 mpbiri ( 𝑋 ∈ V → ( 𝑋𝑥 ) ∈ 𝒫 𝑋 )
27 26 3ad2ant1 ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → ( 𝑋𝑥 ) ∈ 𝒫 𝑋 )
28 simp2 ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → 𝑥𝑋 )
29 dfss4 ( 𝑥𝑋 ↔ ( 𝑋 ∖ ( 𝑋𝑥 ) ) = 𝑥 )
30 28 29 sylib ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → ( 𝑋 ∖ ( 𝑋𝑥 ) ) = 𝑥 )
31 simp3 ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → 𝑥𝑋 )
32 30 31 eqbrtrd ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → ( 𝑋 ∖ ( 𝑋𝑥 ) ) ≺ 𝑋 )
33 23 27 32 elrabd ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → ( 𝑋𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } )
34 ssel ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( ( 𝑋𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } → ( 𝑋𝑥 ) ∈ 𝑓 ) )
35 33 34 syl5com ( ( 𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋𝑥 ) ∈ 𝑓 ) )
36 35 3expa ( ( ( 𝑋 ∈ V ∧ 𝑥𝑋 ) ∧ 𝑥𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋𝑥 ) ∈ 𝑓 ) )
37 36 impancom ( ( ( 𝑋 ∈ V ∧ 𝑥𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( 𝑥𝑋 → ( 𝑋𝑥 ) ∈ 𝑓 ) )
38 37 con3d ( ( ( 𝑋 ∈ V ∧ 𝑥𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( ¬ ( 𝑋𝑥 ) ∈ 𝑓 → ¬ 𝑥𝑋 ) )
39 38 impancom ( ( ( 𝑋 ∈ V ∧ 𝑥𝑋 ) ∧ ¬ ( 𝑋𝑥 ) ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥𝑋 ) )
40 10 14 21 39 syl21anc ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥𝑋 ) )
41 bren2 ( 𝑥𝑋 ↔ ( 𝑥𝑋 ∧ ¬ 𝑥𝑋 ) )
42 41 simplbi2 ( 𝑥𝑋 → ( ¬ 𝑥𝑋𝑥𝑋 ) )
43 16 40 42 sylsyld ( ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓𝑥𝑋 ) )
44 43 ralrimdva ( ( ω ≼ 𝑋𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∀ 𝑥𝑓 𝑥𝑋 ) )
45 44 reximdva ( ω ≼ 𝑋 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥𝑓 𝑥𝑋 ) )
46 8 45 mpd ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥𝑓 𝑥𝑋 )