| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldom |
⊢ Rel ≼ |
| 2 |
1
|
brrelex2i |
⊢ ( ω ≼ 𝑋 → 𝑋 ∈ V ) |
| 3 |
|
numth3 |
⊢ ( 𝑋 ∈ V → 𝑋 ∈ dom card ) |
| 4 |
2 3
|
syl |
⊢ ( ω ≼ 𝑋 → 𝑋 ∈ dom card ) |
| 5 |
|
csdfil |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |
| 6 |
4 5
|
mpancom |
⊢ ( ω ≼ 𝑋 → { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |
| 7 |
|
filssufil |
⊢ ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) |
| 8 |
6 7
|
syl |
⊢ ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) |
| 9 |
|
elfvex |
⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ V ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑋 ∈ V ) |
| 11 |
|
ufilfil |
⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 12 |
|
filelss |
⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 13 |
11 12
|
sylan |
⊢ ( ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 14 |
13
|
adantll |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) |
| 15 |
|
ssdomg |
⊢ ( 𝑋 ∈ V → ( 𝑥 ⊆ 𝑋 → 𝑥 ≼ 𝑋 ) ) |
| 16 |
10 14 15
|
sylc |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ≼ 𝑋 ) |
| 17 |
|
filfbas |
⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 18 |
11 17
|
syl |
⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 20 |
|
fbncp |
⊢ ( ( 𝑓 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) |
| 21 |
19 20
|
sylan |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) |
| 22 |
|
difeq2 |
⊢ ( 𝑦 = ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) |
| 23 |
22
|
breq1d |
⊢ ( 𝑦 = ( 𝑋 ∖ 𝑥 ) → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ≺ 𝑋 ) ) |
| 24 |
|
difss |
⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 |
| 25 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) |
| 26 |
24 25
|
mpbiri |
⊢ ( 𝑋 ∈ V → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 28 |
|
simp2 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
| 29 |
|
dfss4 |
⊢ ( 𝑥 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 31 |
|
simp3 |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → 𝑥 ≺ 𝑋 ) |
| 32 |
30 31
|
eqbrtrd |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ≺ 𝑋 ) |
| 33 |
23 27 32
|
elrabd |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ) |
| 34 |
|
ssel |
⊢ ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( ( 𝑋 ∖ 𝑥 ) ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 35 |
33 34
|
syl5com |
⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ∧ 𝑥 ≺ 𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 36 |
35
|
3expa |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑥 ≺ 𝑋 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 37 |
36
|
impancom |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( 𝑥 ≺ 𝑋 → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) ) |
| 38 |
37
|
con3d |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 ) → ( ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 39 |
38
|
impancom |
⊢ ( ( ( 𝑋 ∈ V ∧ 𝑥 ⊆ 𝑋 ) ∧ ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 40 |
10 14 21 39
|
syl21anc |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ¬ 𝑥 ≺ 𝑋 ) ) |
| 41 |
|
bren2 |
⊢ ( 𝑥 ≈ 𝑋 ↔ ( 𝑥 ≼ 𝑋 ∧ ¬ 𝑥 ≺ 𝑋 ) ) |
| 42 |
41
|
simplbi2 |
⊢ ( 𝑥 ≼ 𝑋 → ( ¬ 𝑥 ≺ 𝑋 → 𝑥 ≈ 𝑋 ) ) |
| 43 |
16 40 42
|
sylsyld |
⊢ ( ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑓 ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → 𝑥 ≈ 𝑋 ) ) |
| 44 |
43
|
ralrimdva |
⊢ ( ( ω ≼ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) ) |
| 45 |
44
|
reximdva |
⊢ ( ω ≼ 𝑋 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 } ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) ) |
| 46 |
8 45
|
mpd |
⊢ ( ω ≼ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑥 ∈ 𝑓 𝑥 ≈ 𝑋 ) |