Metamath Proof Explorer


Theorem ufilfil

Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 isufil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) ) )
2 1 simplbi ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )