Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 ⊆ 𝐺 ) |
2 |
|
filelss |
⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ⊆ 𝑋 ) |
3 |
2
|
ex |
⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋 ) ) |
5 |
|
ufilb |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
6 |
5
|
3ad2antl1 |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ 𝐺 ) |
8 |
7
|
sseld |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
9 |
|
filfbas |
⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → 𝐺 ∈ ( fBas ‘ 𝑋 ) ) |
10 |
|
fbncp |
⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) |
11 |
10
|
ex |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
13 |
12
|
con2d |
⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
16 |
8 15
|
syld |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺 ) ) |
17 |
6 16
|
sylbid |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺 ) ) |
18 |
17
|
con4d |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) ) |
20 |
19
|
com23 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹 ) ) ) |
21 |
4 20
|
mpdd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) |
22 |
21
|
ssrdv |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐺 ⊆ 𝐹 ) |
23 |
1 22
|
eqssd |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 = 𝐺 ) |