Metamath Proof Explorer


Theorem ufilmax

Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilmax ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → 𝐹𝐺 )
2 filelss ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐺 ) → 𝑥𝑋 )
3 2 ex ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐺𝑥𝑋 ) )
4 3 3ad2ant2 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑥𝐺𝑥𝑋 ) )
5 ufilb ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ¬ 𝑥𝐹 ↔ ( 𝑋𝑥 ) ∈ 𝐹 ) )
6 5 3ad2antl1 ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( ¬ 𝑥𝐹 ↔ ( 𝑋𝑥 ) ∈ 𝐹 ) )
7 simpl3 ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → 𝐹𝐺 )
8 7 sseld ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐹 → ( 𝑋𝑥 ) ∈ 𝐺 ) )
9 filfbas ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → 𝐺 ∈ ( fBas ‘ 𝑋 ) )
10 fbncp ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥𝐺 ) → ¬ ( 𝑋𝑥 ) ∈ 𝐺 )
11 10 ex ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥𝐺 → ¬ ( 𝑋𝑥 ) ∈ 𝐺 ) )
12 9 11 syl ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐺 → ¬ ( 𝑋𝑥 ) ∈ 𝐺 ) )
13 12 con2d ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐺 → ¬ 𝑥𝐺 ) )
14 13 3ad2ant2 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( ( 𝑋𝑥 ) ∈ 𝐺 → ¬ 𝑥𝐺 ) )
15 14 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐺 → ¬ 𝑥𝐺 ) )
16 8 15 syld ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( ( 𝑋𝑥 ) ∈ 𝐹 → ¬ 𝑥𝐺 ) )
17 6 16 sylbid ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( ¬ 𝑥𝐹 → ¬ 𝑥𝐺 ) )
18 17 con4d ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ∧ 𝑥𝑋 ) → ( 𝑥𝐺𝑥𝐹 ) )
19 18 ex ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑥𝑋 → ( 𝑥𝐺𝑥𝐹 ) ) )
20 19 com23 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑥𝐺 → ( 𝑥𝑋𝑥𝐹 ) ) )
21 4 20 mpdd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → ( 𝑥𝐺𝑥𝐹 ) )
22 21 ssrdv ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → 𝐺𝐹 )
23 1 22 eqssd ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) → 𝐹 = 𝐺 )