Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ dom UFil ) |
2 |
|
elpw2g |
⊢ ( 𝑋 ∈ dom UFil → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
4 |
|
isufil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹 ) ) |
6 |
|
difeq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑆 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
8 |
5 7
|
orbi12d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ↔ ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
9 |
8
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
10 |
4 9
|
simplbiim |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
11 |
3 10
|
sylbird |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |