| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvdm | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝑋  ∈  dom  UFil ) | 
						
							| 2 |  | elpw2g | ⊢ ( 𝑋  ∈  dom  UFil  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑆  ∈  𝒫  𝑋  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 4 |  | isufil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝑆  →  ( 𝑥  ∈  𝐹  ↔  𝑆  ∈  𝐹 ) ) | 
						
							| 6 |  | difeq2 | ⊢ ( 𝑥  =  𝑆  →  ( 𝑋  ∖  𝑥 )  =  ( 𝑋  ∖  𝑆 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝑋  ∖  𝑥 )  ∈  𝐹  ↔  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) | 
						
							| 8 | 5 7 | orbi12d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 )  ↔  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) ) | 
						
							| 9 | 8 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 )  →  ( 𝑆  ∈  𝒫  𝑋  →  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) ) | 
						
							| 10 | 4 9 | simplbiim | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑆  ∈  𝒫  𝑋  →  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) ) | 
						
							| 11 | 3 10 | sylbird | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝑆  ⊆  𝑋  →  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑆  ∈  𝐹  ∨  ( 𝑋  ∖  𝑆 )  ∈  𝐹 ) ) |