Metamath Proof Explorer


Theorem ufilss

Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilss ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 ∈ dom UFil )
2 elpw2g ( 𝑋 ∈ dom UFil → ( 𝑆 ∈ 𝒫 𝑋𝑆𝑋 ) )
3 1 2 syl ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋𝑆𝑋 ) )
4 isufil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) ) )
5 eleq1 ( 𝑥 = 𝑆 → ( 𝑥𝐹𝑆𝐹 ) )
6 difeq2 ( 𝑥 = 𝑆 → ( 𝑋𝑥 ) = ( 𝑋𝑆 ) )
7 6 eleq1d ( 𝑥 = 𝑆 → ( ( 𝑋𝑥 ) ∈ 𝐹 ↔ ( 𝑋𝑆 ) ∈ 𝐹 ) )
8 5 7 orbi12d ( 𝑥 = 𝑆 → ( ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) ↔ ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) ) )
9 8 rspccv ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥𝐹 ∨ ( 𝑋𝑥 ) ∈ 𝐹 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) ) )
10 4 9 simplbiim ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) ) )
11 3 10 sylbird ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑆𝑋 → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) ) )
12 11 imp ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑆𝐹 ∨ ( 𝑋𝑆 ) ∈ 𝐹 ) )